Projective Planes of Order 49 Related to t112


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t112 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t112

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t112, dual dt112 115248 23,45,83,2401 1,983,1965,3923 937
2 t112_0_0, dt112_0_0 2058 1,756,2058 18,42,4949 987
3 t112_0_1, dt112_0_1 2058 1,756,2058 18,42,4949 987
4 t112_0_2, dt112_0_2 2058 1,756,2058 18,42,4949 987
5 t112_0_3, dt112_0_3 2058 1,756,2058 18,42,4949 987
6 t112_0_4, dt112_0_4 2058 1,756,2058 18,42,4949 987
7 t112_0_5, dt112_0_5 2058 1,756,2058 18,42,4949 987
8 t112_0_6, dt112_0_6 2058 1,756,2058 18,42,4949 987
9 t112_0_7, dt112_0_7 2058 1,756,2058 18,42,4949 987
10 t112_1_0, dt112_1_0 2058 1,756,2058 18,42,4949 987
11 t112_1_1, dt112_1_1 2058 1,756,2058 18,42,4949 987
12 t112_1_2, dt112_1_2 2058 1,756,2058 18,42,4949 987
13 t112_1_3, dt112_1_3 2058 1,756,2058 18,42,4949 987
14 t112_1_4, dt112_1_4 2058 1,756,2058 18,42,4949 987
15 t112_1_5, dt112_1_5 2058 1,756,2058 18,42,4949 987
16 t112_1_6, dt112_1_6 2058 1,756,2058 18,42,4949 987
17 t112_1_7, dt112_1_7 2058 1,756,2058 18,42,4949 987
18 t112_2_0, dt112_2_0 2058 1,756,2058 18,42,4949 987
19 t112_2_1, dt112_2_1 2058 1,756,2058 18,42,4949 987
20 t112_2_2, dt112_2_2 2058 1,756,2058 18,42,4949 987
21 t112_2_3, dt112_2_3 2058 1,756,2058 18,42,4949 987
22 t112_2_4, dt112_2_4 2058 1,756,2058 18,42,4949 987
23 t112_2_5, dt112_2_5 2058 1,756,2058 18,42,4949 987
24 t112_2_6, dt112_2_6 2058 1,756,2058 18,42,4949 987
25 t112_2_7, dt112_2_7 2058 1,756,2058 18,42,4949 987
26 t112_3_0, dt112_3_0 2058 1,756,2058 18,42,4949 987
27 t112_3_1, dt112_3_1 2058 1,756,2058 18,42,4949 987
28 t112_3_2, dt112_3_2 2058 1,756,2058 18,42,4949 987
29 t112_3_3, dt112_3_3 4116 1,78,1424,2058 12,23,42,497,9821 985
30 t112_3_4, dt112_3_4 4116 1,78,1424,2058 12,23,42,497,9821 987
31 t112_4_0, dt112_4_0 4116 1,78,1424,2058 12,23,42,497,9821 987
32 t112_4_1, dt112_4_1 4116 1,78,1424,2058 12,23,42,497,9821 987
33 t112_4_2, dt112_4_2 2058 1,756,2058 18,42,4949 987
34 t112_4_3, dt112_4_3 2058 1,756,2058 18,42,4949 987
35 t112_4_4, dt112_4_4 2058 1,756,2058 18,42,4949 987
36 t112_5_0, dt112_5_0 2058 1,756,2058 18,42,4949 987
37 t112_5_1, dt112_5_1 2058 1,756,2058 18,42,4949 987
38 t112_5_2, dt112_5_2 2058 1,756,2058 18,42,4949 987
39 t112_5_3, dt112_5_3 2058 1,756,2058 18,42,4949 987
40 t112_6_0, dt112_6_0 2058 1,756,2058 18,42,4949 987
41 t112_6_1, dt112_6_1 2058 1,756,2058 18,42,4949 987
42 t112_6_2, dt112_6_2 2058 1,756,2058 18,42,4949 987
43 t112_6_3, dt112_6_3 2058 1,756,2058 18,42,4949 987
44 t112_7_0, dt112_7_0 2058 1,756,2058 18,42,4949 987
45 t112_7_1, dt112_7_1 4116 1,78,1424,2058 12,23,42,497,9821 985
46 t112_7_2, dt112_7_2 2058 1,756,2058 18,42,4949 987
47 t112_7_3, dt112_7_3 4116 1,78,1424,2058 12,23,42,497,9821 987
48 t112_7_4, dt112_7_4 2058 1,756,2058 18,42,4949 987
49 t112_8_0, dt112_8_0 4116 1,78,1424,2058 12,23,42,497,9821 987
50 t112_8_1, dt112_8_1 2058 1,756,2058 18,42,4949 987
51 t112_8_2, dt112_8_2 4116 1,78,1424,2058 12,23,42,497,9821 987
52 t112_9_0, dt112_9_0 2058 1,756,2058 18,42,4949 987
53 t112_9_1, dt112_9_1 2058 1,756,2058 18,42,4949 987
54 t112_10_0, dt112_10_0 2058 1,756,2058 18,42,4949 987
55 t112_10_1, dt112_10_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011