Projective Planes of Order 49 Related to t111


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t111 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t111

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t111, dual dt111 28812 112,219,2401 1,4912,9819 941
2 t111_0_0, dt111_0_0 2058 1,756,2058 18,42,4949 987
3 t111_0_1, dt111_0_1 2058 1,756,2058 18,42,4949 987
4 t111_0_2, dt111_0_2 2058 1,756,2058 18,42,4949 987
5 t111_0_3, dt111_0_3 2058 1,756,2058 18,42,4949 987
6 t111_0_4, dt111_0_4 2058 1,756,2058 18,42,4949 987
7 t111_0_5, dt111_0_5 2058 1,756,2058 18,42,4949 987
8 t111_0_6, dt111_0_6 2058 1,756,2058 18,42,4949 987
9 t111_0_7, dt111_0_7 2058 1,756,2058 18,42,4949 987
10 t111_1_0, dt111_1_0 2058 1,756,2058 18,42,4949 987
11 t111_1_1, dt111_1_1 2058 1,756,2058 18,42,4949 987
12 t111_1_2, dt111_1_2 2058 1,756,2058 18,42,4949 987
13 t111_1_3, dt111_1_3 2058 1,756,2058 18,42,4949 987
14 t111_1_4, dt111_1_4 2058 1,756,2058 18,42,4949 987
15 t111_1_5, dt111_1_5 2058 1,756,2058 18,42,4949 987
16 t111_1_6, dt111_1_6 2058 1,756,2058 18,42,4949 987
17 t111_1_7, dt111_1_7 2058 1,756,2058 18,42,4949 987
18 t111_2_0, dt111_2_0 2058 1,756,2058 18,42,4949 987
19 t111_2_1, dt111_2_1 2058 1,756,2058 18,42,4949 987
20 t111_2_2, dt111_2_2 2058 1,756,2058 18,42,4949 987
21 t111_2_3, dt111_2_3 2058 1,756,2058 18,42,4949 987
22 t111_2_4, dt111_2_4 2058 1,756,2058 18,42,4949 987
23 t111_2_5, dt111_2_5 2058 1,756,2058 18,42,4949 987
24 t111_2_6, dt111_2_6 2058 1,756,2058 18,42,4949 987
25 t111_2_7, dt111_2_7 2058 1,756,2058 18,42,4949 987
26 t111_3_0, dt111_3_0 2058 1,756,2058 18,42,4949 987
27 t111_3_1, dt111_3_1 2058 1,756,2058 18,42,4949 987
28 t111_3_2, dt111_3_2 2058 1,756,2058 18,42,4949 987
29 t111_3_3, dt111_3_3 2058 1,756,2058 18,42,4949 987
30 t111_3_4, dt111_3_4 2058 1,756,2058 18,42,4949 987
31 t111_3_5, dt111_3_5 2058 1,756,2058 18,42,4949 987
32 t111_3_6, dt111_3_6 2058 1,756,2058 18,42,4949 987
33 t111_3_7, dt111_3_7 2058 1,756,2058 18,42,4949 987
34 t111_4_0, dt111_4_0 2058 1,756,2058 18,42,4949 987
35 t111_4_1, dt111_4_1 2058 1,756,2058 18,42,4949 987
36 t111_4_2, dt111_4_2 2058 1,756,2058 18,42,4949 987
37 t111_4_3, dt111_4_3 2058 1,756,2058 18,42,4949 987
38 t111_4_4, dt111_4_4 2058 1,756,2058 18,42,4949 987
39 t111_4_5, dt111_4_5 2058 1,756,2058 18,42,4949 987
40 t111_4_6, dt111_4_6 2058 1,756,2058 18,42,4949 987
41 t111_4_7, dt111_4_7 2058 1,756,2058 18,42,4949 987
42 t111_5_0, dt111_5_0 2058 1,756,2058 18,42,4949 987
43 t111_5_1, dt111_5_1 2058 1,756,2058 18,42,4949 987
44 t111_5_2, dt111_5_2 2058 1,756,2058 18,42,4949 987
45 t111_5_3, dt111_5_3 2058 1,756,2058 18,42,4949 987
46 t111_5_4, dt111_5_4 2058 1,756,2058 18,42,4949 987
47 t111_5_5, dt111_5_5 2058 1,756,2058 18,42,4949 987
48 t111_5_6, dt111_5_6 2058 1,756,2058 18,42,4949 987
49 t111_5_7, dt111_5_7 2058 1,756,2058 18,42,4949 987
50 t111_6_0, dt111_6_0 2058 1,756,2058 18,42,4949 987
51 t111_6_1, dt111_6_1 2058 1,756,2058 18,42,4949 987
52 t111_6_2, dt111_6_2 2058 1,756,2058 18,42,4949 987
53 t111_6_3, dt111_6_3 2058 1,756,2058 18,42,4949 987
54 t111_6_4, dt111_6_4 2058 1,756,2058 18,42,4949 987
55 t111_6_5, dt111_6_5 2058 1,756,2058 18,42,4949 987
56 t111_6_6, dt111_6_6 2058 1,756,2058 18,42,4949 987
57 t111_6_7, dt111_6_7 2058 1,756,2058 18,42,4949 987
58 t111_7_0, dt111_7_0 2058 1,756,2058 18,42,4949 987
59 t111_7_1, dt111_7_1 2058 1,756,2058 18,42,4949 987
60 t111_7_2, dt111_7_2 2058 1,756,2058 18,42,4949 987
61 t111_7_3, dt111_7_3 2058 1,756,2058 18,42,4949 987
62 t111_7_4, dt111_7_4 2058 1,756,2058 18,42,4949 987
63 t111_7_5, dt111_7_5 2058 1,756,2058 18,42,4949 987
64 t111_7_6, dt111_7_6 2058 1,756,2058 18,42,4949 987
65 t111_7_7, dt111_7_7 2058 1,756,2058 18,42,4949 987
66 t111_8_0, dt111_8_0 2058 1,756,2058 18,42,4949 987
67 t111_8_1, dt111_8_1 2058 1,756,2058 18,42,4949 987
68 t111_8_2, dt111_8_2 2058 1,756,2058 18,42,4949 987
69 t111_8_3, dt111_8_3 2058 1,756,2058 18,42,4949 987
70 t111_8_4, dt111_8_4 2058 1,756,2058 18,42,4949 987
71 t111_8_5, dt111_8_5 2058 1,756,2058 18,42,4949 987
72 t111_8_6, dt111_8_6 2058 1,756,2058 18,42,4949 987
73 t111_8_7, dt111_8_7 2058 1,756,2058 18,42,4949 987
74 t111_9_0, dt111_9_0 2058 1,756,2058 18,42,4949 987
75 t111_9_1, dt111_9_1 2058 1,756,2058 18,42,4949 987
76 t111_9_2, dt111_9_2 2058 1,756,2058 18,42,4949 987
77 t111_9_3, dt111_9_3 2058 1,756,2058 18,42,4949 987
78 t111_9_4, dt111_9_4 2058 1,756,2058 18,42,4949 987
79 t111_9_5, dt111_9_5 2058 1,756,2058 18,42,4949 987
80 t111_9_6, dt111_9_6 2058 1,756,2058 18,42,4949 987
81 t111_9_7, dt111_9_7 2058 1,756,2058 18,42,4949 987
82 t111_10_0, dt111_10_0 2058 1,756,2058 18,42,4949 987
83 t111_10_1, dt111_10_1 2058 1,756,2058 18,42,4949 987
84 t111_10_2, dt111_10_2 2058 1,756,2058 18,42,4949 987
85 t111_10_3, dt111_10_3 2058 1,756,2058 18,42,4949 987
86 t111_10_4, dt111_10_4 2058 1,756,2058 18,42,4949 987
87 t111_10_5, dt111_10_5 2058 1,756,2058 18,42,4949 987
88 t111_10_6, dt111_10_6 2058 1,756,2058 18,42,4949 987
89 t111_10_7, dt111_10_7 2058 1,756,2058 18,42,4949 987
90 t111_11_0, dt111_11_0 2058 1,756,2058 18,42,4949 987
91 t111_11_1, dt111_11_1 2058 1,756,2058 18,42,4949 987
92 t111_11_2, dt111_11_2 2058 1,756,2058 18,42,4949 987
93 t111_11_3, dt111_11_3 2058 1,756,2058 18,42,4949 987
94 t111_11_4, dt111_11_4 2058 1,756,2058 18,42,4949 987
95 t111_11_5, dt111_11_5 2058 1,756,2058 18,42,4949 987
96 t111_11_6, dt111_11_6 2058 1,756,2058 18,42,4949 987
97 t111_11_7, dt111_11_7 2058 1,756,2058 18,42,4949 987
98 t111_12_0, dt111_12_0 2058 1,756,2058 18,42,4949 987
99 t111_12_1, dt111_12_1 2058 1,756,2058 18,42,4949 987
100 t111_12_2, dt111_12_2 2058 1,756,2058 18,42,4949 987
101 t111_12_3, dt111_12_3 2058 1,756,2058 18,42,4949 987
102 t111_12_4, dt111_12_4 2058 1,756,2058 18,42,4949 987
103 t111_12_5, dt111_12_5 2058 1,756,2058 18,42,4949 987
104 t111_12_6, dt111_12_6 2058 1,756,2058 18,42,4949 987
105 t111_12_7, dt111_12_7 2058 1,756,2058 18,42,4949 987
106 t111_13_0, dt111_13_0 2058 1,756,2058 18,42,4949 987
107 t111_13_1, dt111_13_1 2058 1,756,2058 18,42,4949 987
108 t111_13_2, dt111_13_2 2058 1,756,2058 18,42,4949 987
109 t111_13_3, dt111_13_3 2058 1,756,2058 18,42,4949 987
110 t111_13_4, dt111_13_4 2058 1,756,2058 18,42,4949 987
111 t111_13_5, dt111_13_5 2058 1,756,2058 18,42,4949 987
112 t111_13_6, dt111_13_6 2058 1,756,2058 18,42,4949 987
113 t111_13_7, dt111_13_7 2058 1,756,2058 18,42,4949 987
114 t111_14_0, dt111_14_0 2058 1,756,2058 18,42,4949 987
115 t111_14_1, dt111_14_1 2058 1,756,2058 18,42,4949 987
116 t111_14_2, dt111_14_2 2058 1,756,2058 18,42,4949 987
117 t111_14_3, dt111_14_3 2058 1,756,2058 18,42,4949 987
118 t111_14_4, dt111_14_4 2058 1,756,2058 18,42,4949 987
119 t111_14_5, dt111_14_5 2058 1,756,2058 18,42,4949 987
120 t111_14_6, dt111_14_6 2058 1,756,2058 18,42,4949 987
121 t111_14_7, dt111_14_7 2058 1,756,2058 18,42,4949 987
122 t111_15_0, dt111_15_0 2058 1,756,2058 18,42,4949 987
123 t111_15_1, dt111_15_1 2058 1,756,2058 18,42,4949 987
124 t111_15_2, dt111_15_2 2058 1,756,2058 18,42,4949 987
125 t111_15_3, dt111_15_3 2058 1,756,2058 18,42,4949 987
126 t111_15_4, dt111_15_4 2058 1,756,2058 18,42,4949 987
127 t111_15_5, dt111_15_5 2058 1,756,2058 18,42,4949 987
128 t111_15_6, dt111_15_6 2058 1,756,2058 18,42,4949 987
129 t111_15_7, dt111_15_7 2058 1,756,2058 18,42,4949 987
130 t111_16_0, dt111_16_0 2058 1,756,2058 18,42,4949 987
131 t111_16_1, dt111_16_1 2058 1,756,2058 18,42,4949 987
132 t111_16_2, dt111_16_2 2058 1,756,2058 18,42,4949 987
133 t111_16_3, dt111_16_3 2058 1,756,2058 18,42,4949 987
134 t111_16_4, dt111_16_4 2058 1,756,2058 18,42,4949 987
135 t111_16_5, dt111_16_5 2058 1,756,2058 18,42,4949 987
136 t111_16_6, dt111_16_6 2058 1,756,2058 18,42,4949 987
137 t111_16_7, dt111_16_7 2058 1,756,2058 18,42,4949 987
138 t111_17_0, dt111_17_0 2058 1,756,2058 18,42,4949 987
139 t111_17_1, dt111_17_1 2058 1,756,2058 18,42,4949 987
140 t111_17_2, dt111_17_2 2058 1,756,2058 18,42,4949 987
141 t111_17_3, dt111_17_3 2058 1,756,2058 18,42,4949 987
142 t111_17_4, dt111_17_4 2058 1,756,2058 18,42,4949 987
143 t111_17_5, dt111_17_5 2058 1,756,2058 18,42,4949 987
144 t111_17_6, dt111_17_6 2058 1,756,2058 18,42,4949 987
145 t111_17_7, dt111_17_7 2058 1,756,2058 18,42,4949 987
146 t111_18_0, dt111_18_0 2058 1,756,2058 18,42,4949 987
147 t111_18_1, dt111_18_1 2058 1,756,2058 18,42,4949 987
148 t111_18_2, dt111_18_2 2058 1,756,2058 18,42,4949 987
149 t111_18_3, dt111_18_3 2058 1,756,2058 18,42,4949 987
150 t111_18_4, dt111_18_4 2058 1,756,2058 18,42,4949 987
151 t111_18_5, dt111_18_5 2058 1,756,2058 18,42,4949 987
152 t111_18_6, dt111_18_6 2058 1,756,2058 18,42,4949 987
153 t111_18_7, dt111_18_7 2058 1,756,2058 18,42,4949 987
154 t111_19_0, dt111_19_0 2058 1,756,2058 18,42,4949 987
155 t111_19_1, dt111_19_1 2058 1,756,2058 18,42,4949 987
156 t111_19_2, dt111_19_2 2058 1,756,2058 18,42,4949 987
157 t111_19_3, dt111_19_3 2058 1,756,2058 18,42,4949 987
158 t111_20_0, dt111_20_0 2058 1,756,2058 18,42,4949 987
159 t111_20_1, dt111_20_1 2058 1,756,2058 18,42,4949 987
160 t111_20_2, dt111_20_2 2058 1,756,2058 18,42,4949 987
161 t111_20_3, dt111_20_3 2058 1,756,2058 18,42,4949 987
162 t111_21_0, dt111_21_0 2058 1,756,2058 18,42,4949 987
163 t111_21_1, dt111_21_1 2058 1,756,2058 18,42,4949 987
164 t111_21_2, dt111_21_2 2058 1,756,2058 18,42,4949 987
165 t111_21_3, dt111_21_3 2058 1,756,2058 18,42,4949 987
166 t111_22_0, dt111_22_0 2058 1,756,2058 18,42,4949 987
167 t111_22_1, dt111_22_1 2058 1,756,2058 18,42,4949 987
168 t111_22_2, dt111_22_2 2058 1,756,2058 18,42,4949 987
169 t111_22_3, dt111_22_3 2058 1,756,2058 18,42,4949 987
170 t111_23_0, dt111_23_0 2058 1,756,2058 18,42,4949 987
171 t111_23_1, dt111_23_1 2058 1,756,2058 18,42,4949 987
172 t111_23_2, dt111_23_2 2058 1,756,2058 18,42,4949 987
173 t111_23_3, dt111_23_3 2058 1,756,2058 18,42,4949 987
174 t111_24_0, dt111_24_0 2058 1,756,2058 18,42,4949 987
175 t111_24_1, dt111_24_1 2058 1,756,2058 18,42,4949 987
176 t111_24_2, dt111_24_2 2058 1,756,2058 18,42,4949 987
177 t111_24_3, dt111_24_3 2058 1,756,2058 18,42,4949 987
178 t111_25_0, dt111_25_0 2058 1,756,2058 18,42,4949 987
179 t111_25_1, dt111_25_1 2058 1,756,2058 18,42,4949 987
180 t111_25_2, dt111_25_2 2058 1,756,2058 18,42,4949 987
181 t111_25_3, dt111_25_3 2058 1,756,2058 18,42,4949 987
182 t111_26_0, dt111_26_0 2058 1,756,2058 18,42,4949 987
183 t111_26_1, dt111_26_1 2058 1,756,2058 18,42,4949 987
184 t111_26_2, dt111_26_2 2058 1,756,2058 18,42,4949 987
185 t111_26_3, dt111_26_3 2058 1,756,2058 18,42,4949 987
186 t111_27_0, dt111_27_0 2058 1,756,2058 18,42,4949 987
187 t111_27_1, dt111_27_1 2058 1,756,2058 18,42,4949 987
188 t111_27_2, dt111_27_2 2058 1,756,2058 18,42,4949 987
189 t111_27_3, dt111_27_3 2058 1,756,2058 18,42,4949 987
190 t111_28_0, dt111_28_0 2058 1,756,2058 18,42,4949 987
191 t111_28_1, dt111_28_1 2058 1,756,2058 18,42,4949 987
192 t111_28_2, dt111_28_2 2058 1,756,2058 18,42,4949 987
193 t111_28_3, dt111_28_3 2058 1,756,2058 18,42,4949 987
194 t111_29_0, dt111_29_0 2058 1,756,2058 18,42,4949 987
195 t111_29_1, dt111_29_1 2058 1,756,2058 18,42,4949 987
196 t111_29_2, dt111_29_2 2058 1,756,2058 18,42,4949 987
197 t111_29_3, dt111_29_3 2058 1,756,2058 18,42,4949 987
198 t111_30_0, dt111_30_0 2058 1,756,2058 18,42,4949 987
199 t111_30_1, dt111_30_1 2058 1,756,2058 18,42,4949 987
200 t111_30_2, dt111_30_2 2058 1,756,2058 18,42,4949 987
201 t111_30_3, dt111_30_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011