Projective Planes of Order 49 Related to t109


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t109 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t109

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t109, dual dt109 28812 16,222,2401 1,496,9822 941
2 t109_0_0, dt109_0_0 2058 1,756,2058 18,42,4949 987
3 t109_0_1, dt109_0_1 2058 1,756,2058 18,42,4949 987
4 t109_0_2, dt109_0_2 2058 1,756,2058 18,42,4949 987
5 t109_0_3, dt109_0_3 2058 1,756,2058 18,42,4949 987
6 t109_0_4, dt109_0_4 2058 1,756,2058 18,42,4949 987
7 t109_0_5, dt109_0_5 2058 1,756,2058 18,42,4949 987
8 t109_0_6, dt109_0_6 2058 1,756,2058 18,42,4949 987
9 t109_0_7, dt109_0_7 2058 1,756,2058 18,42,4949 987
10 t109_1_0, dt109_1_0 2058 1,756,2058 18,42,4949 987
11 t109_1_1, dt109_1_1 2058 1,756,2058 18,42,4949 987
12 t109_1_2, dt109_1_2 2058 1,756,2058 18,42,4949 987
13 t109_1_3, dt109_1_3 2058 1,756,2058 18,42,4949 987
14 t109_1_4, dt109_1_4 2058 1,756,2058 18,42,4949 987
15 t109_1_5, dt109_1_5 2058 1,756,2058 18,42,4949 987
16 t109_1_6, dt109_1_6 2058 1,756,2058 18,42,4949 987
17 t109_1_7, dt109_1_7 2058 1,756,2058 18,42,4949 987
18 t109_2_0, dt109_2_0 2058 1,756,2058 18,42,4949 987
19 t109_2_1, dt109_2_1 2058 1,756,2058 18,42,4949 987
20 t109_2_2, dt109_2_2 2058 1,756,2058 18,42,4949 987
21 t109_2_3, dt109_2_3 2058 1,756,2058 18,42,4949 987
22 t109_2_4, dt109_2_4 2058 1,756,2058 18,42,4949 987
23 t109_2_5, dt109_2_5 2058 1,756,2058 18,42,4949 987
24 t109_2_6, dt109_2_6 2058 1,756,2058 18,42,4949 987
25 t109_2_7, dt109_2_7 2058 1,756,2058 18,42,4949 987
26 t109_3_0, dt109_3_0 2058 1,756,2058 18,42,4949 987
27 t109_3_1, dt109_3_1 2058 1,756,2058 18,42,4949 987
28 t109_3_2, dt109_3_2 2058 1,756,2058 18,42,4949 987
29 t109_3_3, dt109_3_3 2058 1,756,2058 18,42,4949 987
30 t109_3_4, dt109_3_4 2058 1,756,2058 18,42,4949 987
31 t109_3_5, dt109_3_5 2058 1,756,2058 18,42,4949 987
32 t109_3_6, dt109_3_6 2058 1,756,2058 18,42,4949 987
33 t109_3_7, dt109_3_7 2058 1,756,2058 18,42,4949 987
34 t109_4_0, dt109_4_0 2058 1,756,2058 18,42,4949 987
35 t109_4_1, dt109_4_1 2058 1,756,2058 18,42,4949 987
36 t109_4_2, dt109_4_2 2058 1,756,2058 18,42,4949 987
37 t109_4_3, dt109_4_3 2058 1,756,2058 18,42,4949 987
38 t109_4_4, dt109_4_4 2058 1,756,2058 18,42,4949 987
39 t109_4_5, dt109_4_5 2058 1,756,2058 18,42,4949 987
40 t109_4_6, dt109_4_6 2058 1,756,2058 18,42,4949 987
41 t109_4_7, dt109_4_7 2058 1,756,2058 18,42,4949 987
42 t109_5_0, dt109_5_0 2058 1,756,2058 18,42,4949 987
43 t109_5_1, dt109_5_1 2058 1,756,2058 18,42,4949 987
44 t109_5_2, dt109_5_2 2058 1,756,2058 18,42,4949 987
45 t109_5_3, dt109_5_3 2058 1,756,2058 18,42,4949 987
46 t109_5_4, dt109_5_4 2058 1,756,2058 18,42,4949 987
47 t109_5_5, dt109_5_5 2058 1,756,2058 18,42,4949 987
48 t109_5_6, dt109_5_6 2058 1,756,2058 18,42,4949 987
49 t109_5_7, dt109_5_7 2058 1,756,2058 18,42,4949 987
50 t109_6_0, dt109_6_0 2058 1,756,2058 18,42,4949 987
51 t109_6_1, dt109_6_1 2058 1,756,2058 18,42,4949 987
52 t109_6_2, dt109_6_2 2058 1,756,2058 18,42,4949 987
53 t109_6_3, dt109_6_3 2058 1,756,2058 18,42,4949 987
54 t109_6_4, dt109_6_4 2058 1,756,2058 18,42,4949 987
55 t109_6_5, dt109_6_5 2058 1,756,2058 18,42,4949 987
56 t109_6_6, dt109_6_6 2058 1,756,2058 18,42,4949 987
57 t109_6_7, dt109_6_7 2058 1,756,2058 18,42,4949 987
58 t109_7_0, dt109_7_0 2058 1,756,2058 18,42,4949 987
59 t109_7_1, dt109_7_1 2058 1,756,2058 18,42,4949 987
60 t109_7_2, dt109_7_2 2058 1,756,2058 18,42,4949 987
61 t109_7_3, dt109_7_3 2058 1,756,2058 18,42,4949 987
62 t109_7_4, dt109_7_4 2058 1,756,2058 18,42,4949 987
63 t109_7_5, dt109_7_5 2058 1,756,2058 18,42,4949 987
64 t109_7_6, dt109_7_6 2058 1,756,2058 18,42,4949 987
65 t109_7_7, dt109_7_7 2058 1,756,2058 18,42,4949 987
66 t109_8_0, dt109_8_0 2058 1,756,2058 18,42,4949 987
67 t109_8_1, dt109_8_1 2058 1,756,2058 18,42,4949 987
68 t109_8_2, dt109_8_2 2058 1,756,2058 18,42,4949 987
69 t109_8_3, dt109_8_3 2058 1,756,2058 18,42,4949 987
70 t109_8_4, dt109_8_4 2058 1,756,2058 18,42,4949 987
71 t109_8_5, dt109_8_5 2058 1,756,2058 18,42,4949 987
72 t109_8_6, dt109_8_6 2058 1,756,2058 18,42,4949 987
73 t109_8_7, dt109_8_7 2058 1,756,2058 18,42,4949 987
74 t109_9_0, dt109_9_0 2058 1,756,2058 18,42,4949 987
75 t109_9_1, dt109_9_1 2058 1,756,2058 18,42,4949 987
76 t109_9_2, dt109_9_2 2058 1,756,2058 18,42,4949 987
77 t109_9_3, dt109_9_3 2058 1,756,2058 18,42,4949 987
78 t109_9_4, dt109_9_4 2058 1,756,2058 18,42,4949 987
79 t109_9_5, dt109_9_5 2058 1,756,2058 18,42,4949 987
80 t109_9_6, dt109_9_6 2058 1,756,2058 18,42,4949 987
81 t109_9_7, dt109_9_7 2058 1,756,2058 18,42,4949 987
82 t109_10_0, dt109_10_0 2058 1,756,2058 18,42,4949 987
83 t109_10_1, dt109_10_1 2058 1,756,2058 18,42,4949 987
84 t109_10_2, dt109_10_2 2058 1,756,2058 18,42,4949 987
85 t109_10_3, dt109_10_3 2058 1,756,2058 18,42,4949 987
86 t109_10_4, dt109_10_4 2058 1,756,2058 18,42,4949 987
87 t109_10_5, dt109_10_5 2058 1,756,2058 18,42,4949 987
88 t109_10_6, dt109_10_6 2058 1,756,2058 18,42,4949 987
89 t109_10_7, dt109_10_7 2058 1,756,2058 18,42,4949 987
90 t109_11_0, dt109_11_0 2058 1,756,2058 18,42,4949 987
91 t109_11_1, dt109_11_1 2058 1,756,2058 18,42,4949 987
92 t109_11_2, dt109_11_2 2058 1,756,2058 18,42,4949 987
93 t109_11_3, dt109_11_3 2058 1,756,2058 18,42,4949 987
94 t109_11_4, dt109_11_4 2058 1,756,2058 18,42,4949 987
95 t109_11_5, dt109_11_5 2058 1,756,2058 18,42,4949 987
96 t109_11_6, dt109_11_6 2058 1,756,2058 18,42,4949 987
97 t109_11_7, dt109_11_7 2058 1,756,2058 18,42,4949 987
98 t109_12_0, dt109_12_0 2058 1,756,2058 18,42,4949 987
99 t109_12_1, dt109_12_1 2058 1,756,2058 18,42,4949 987
100 t109_12_2, dt109_12_2 2058 1,756,2058 18,42,4949 987
101 t109_12_3, dt109_12_3 2058 1,756,2058 18,42,4949 987
102 t109_12_4, dt109_12_4 2058 1,756,2058 18,42,4949 987
103 t109_12_5, dt109_12_5 2058 1,756,2058 18,42,4949 987
104 t109_12_6, dt109_12_6 2058 1,756,2058 18,42,4949 987
105 t109_12_7, dt109_12_7 2058 1,756,2058 18,42,4949 987
106 t109_13_0, dt109_13_0 2058 1,756,2058 18,42,4949 987
107 t109_13_1, dt109_13_1 2058 1,756,2058 18,42,4949 987
108 t109_13_2, dt109_13_2 2058 1,756,2058 18,42,4949 987
109 t109_13_3, dt109_13_3 2058 1,756,2058 18,42,4949 987
110 t109_13_4, dt109_13_4 2058 1,756,2058 18,42,4949 987
111 t109_13_5, dt109_13_5 2058 1,756,2058 18,42,4949 987
112 t109_13_6, dt109_13_6 2058 1,756,2058 18,42,4949 987
113 t109_13_7, dt109_13_7 2058 1,756,2058 18,42,4949 987
114 t109_14_0, dt109_14_0 2058 1,756,2058 18,42,4949 987
115 t109_14_1, dt109_14_1 2058 1,756,2058 18,42,4949 987
116 t109_14_2, dt109_14_2 2058 1,756,2058 18,42,4949 987
117 t109_14_3, dt109_14_3 2058 1,756,2058 18,42,4949 987
118 t109_14_4, dt109_14_4 2058 1,756,2058 18,42,4949 987
119 t109_14_5, dt109_14_5 2058 1,756,2058 18,42,4949 987
120 t109_14_6, dt109_14_6 2058 1,756,2058 18,42,4949 987
121 t109_14_7, dt109_14_7 2058 1,756,2058 18,42,4949 987
122 t109_15_0, dt109_15_0 2058 1,756,2058 18,42,4949 987
123 t109_15_1, dt109_15_1 2058 1,756,2058 18,42,4949 987
124 t109_15_2, dt109_15_2 2058 1,756,2058 18,42,4949 987
125 t109_15_3, dt109_15_3 2058 1,756,2058 18,42,4949 985
126 t109_15_4, dt109_15_4 2058 1,756,2058 18,42,4949 987
127 t109_15_5, dt109_15_5 2058 1,756,2058 18,42,4949 987
128 t109_15_6, dt109_15_6 2058 1,756,2058 18,42,4949 987
129 t109_15_7, dt109_15_7 2058 1,756,2058 18,42,4949 987
130 t109_16_0, dt109_16_0 2058 1,756,2058 18,42,4949 987
131 t109_16_1, dt109_16_1 2058 1,756,2058 18,42,4949 987
132 t109_16_2, dt109_16_2 2058 1,756,2058 18,42,4949 987
133 t109_16_3, dt109_16_3 2058 1,756,2058 18,42,4949 987
134 t109_16_4, dt109_16_4 2058 1,756,2058 18,42,4949 987
135 t109_16_5, dt109_16_5 2058 1,756,2058 18,42,4949 987
136 t109_16_6, dt109_16_6 2058 1,756,2058 18,42,4949 987
137 t109_16_7, dt109_16_7 2058 1,756,2058 18,42,4949 987
138 t109_17_0, dt109_17_0 2058 1,756,2058 18,42,4949 987
139 t109_17_1, dt109_17_1 2058 1,756,2058 18,42,4949 987
140 t109_17_2, dt109_17_2 2058 1,756,2058 18,42,4949 987
141 t109_17_3, dt109_17_3 2058 1,756,2058 18,42,4949 987
142 t109_17_4, dt109_17_4 2058 1,756,2058 18,42,4949 987
143 t109_17_5, dt109_17_5 2058 1,756,2058 18,42,4949 987
144 t109_17_6, dt109_17_6 2058 1,756,2058 18,42,4949 987
145 t109_17_7, dt109_17_7 2058 1,756,2058 18,42,4949 987
146 t109_18_0, dt109_18_0 2058 1,756,2058 18,42,4949 987
147 t109_18_1, dt109_18_1 2058 1,756,2058 18,42,4949 987
148 t109_18_2, dt109_18_2 2058 1,756,2058 18,42,4949 987
149 t109_18_3, dt109_18_3 2058 1,756,2058 18,42,4949 987
150 t109_18_4, dt109_18_4 2058 1,756,2058 18,42,4949 987
151 t109_18_5, dt109_18_5 2058 1,756,2058 18,42,4949 987
152 t109_18_6, dt109_18_6 2058 1,756,2058 18,42,4949 987
153 t109_18_7, dt109_18_7 2058 1,756,2058 18,42,4949 987
154 t109_19_0, dt109_19_0 2058 1,756,2058 18,42,4949 987
155 t109_19_1, dt109_19_1 2058 1,756,2058 18,42,4949 987
156 t109_19_2, dt109_19_2 2058 1,756,2058 18,42,4949 987
157 t109_19_3, dt109_19_3 2058 1,756,2058 18,42,4949 987
158 t109_19_4, dt109_19_4 2058 1,756,2058 18,42,4949 987
159 t109_19_5, dt109_19_5 2058 1,756,2058 18,42,4949 987
160 t109_19_6, dt109_19_6 2058 1,756,2058 18,42,4949 987
161 t109_19_7, dt109_19_7 2058 1,756,2058 18,42,4949 987
162 t109_20_0, dt109_20_0 2058 1,756,2058 18,42,4949 987
163 t109_20_1, dt109_20_1 2058 1,756,2058 18,42,4949 987
164 t109_20_2, dt109_20_2 2058 1,756,2058 18,42,4949 987
165 t109_20_3, dt109_20_3 2058 1,756,2058 18,42,4949 987
166 t109_20_4, dt109_20_4 2058 1,756,2058 18,42,4949 987
167 t109_20_5, dt109_20_5 2058 1,756,2058 18,42,4949 987
168 t109_20_6, dt109_20_6 2058 1,756,2058 18,42,4949 987
169 t109_20_7, dt109_20_7 2058 1,756,2058 18,42,4949 987
170 t109_21_0, dt109_21_0 2058 1,756,2058 18,42,4949 987
171 t109_21_1, dt109_21_1 2058 1,756,2058 18,42,4949 987
172 t109_21_2, dt109_21_2 2058 1,756,2058 18,42,4949 987
173 t109_21_3, dt109_21_3 2058 1,756,2058 18,42,4949 987
174 t109_21_4, dt109_21_4 2058 1,756,2058 18,42,4949 987
175 t109_21_5, dt109_21_5 2058 1,756,2058 18,42,4949 987
176 t109_21_6, dt109_21_6 2058 1,756,2058 18,42,4949 987
177 t109_21_7, dt109_21_7 2058 1,756,2058 18,42,4949 987
178 t109_22_0, dt109_22_0 2058 1,756,2058 18,42,4949 987
179 t109_22_1, dt109_22_1 2058 1,756,2058 18,42,4949 987
180 t109_22_2, dt109_22_2 2058 1,756,2058 18,42,4949 987
181 t109_22_3, dt109_22_3 2058 1,756,2058 18,42,4949 987
182 t109_23_0, dt109_23_0 2058 1,756,2058 18,42,4949 987
183 t109_23_1, dt109_23_1 2058 1,756,2058 18,42,4949 987
184 t109_23_2, dt109_23_2 2058 1,756,2058 18,42,4949 987
185 t109_23_3, dt109_23_3 2058 1,756,2058 18,42,4949 987
186 t109_24_0, dt109_24_0 2058 1,756,2058 18,42,4949 987
187 t109_24_1, dt109_24_1 2058 1,756,2058 18,42,4949 987
188 t109_24_2, dt109_24_2 2058 1,756,2058 18,42,4949 987
189 t109_24_3, dt109_24_3 2058 1,756,2058 18,42,4949 987
190 t109_25_0, dt109_25_0 2058 1,756,2058 18,42,4949 987
191 t109_25_1, dt109_25_1 2058 1,756,2058 18,42,4949 987
192 t109_25_2, dt109_25_2 2058 1,756,2058 18,42,4949 987
193 t109_25_3, dt109_25_3 2058 1,756,2058 18,42,4949 987
194 t109_26_0, dt109_26_0 2058 1,756,2058 18,42,4949 987
195 t109_26_1, dt109_26_1 2058 1,756,2058 18,42,4949 987
196 t109_26_2, dt109_26_2 2058 1,756,2058 18,42,4949 987
197 t109_26_3, dt109_26_3 2058 1,756,2058 18,42,4949 987
198 t109_27_0, dt109_27_0 2058 1,756,2058 18,42,4949 987
199 t109_27_1, dt109_27_1 2058 1,756,2058 18,42,4949 987
200 t109_27_2, dt109_27_2 2058 1,756,2058 18,42,4949 987
201 t109_27_3, dt109_27_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011