Projective Planes of Order 49 Related to t108


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t108 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t108

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t108, dual dt108 230496 23,43,84,2401 1,983,1963,3924 941
2 t108_0_0, dt108_0_0 4116 1,78,1424,2058 12,23,42,497,9821 987
3 t108_0_1, dt108_0_1 2058 1,756,2058 18,42,4949 987
4 t108_0_2, dt108_0_2 2058 1,756,2058 18,42,4949 987
5 t108_0_3, dt108_0_3 2058 1,756,2058 18,42,4949 987
6 t108_0_4, dt108_0_4 4116 1,78,1424,2058 12,23,42,497,9821 987
7 t108_1_0, dt108_1_0 2058 1,756,2058 18,42,4949 987
8 t108_1_1, dt108_1_1 2058 1,756,2058 18,42,4949 987
9 t108_1_2, dt108_1_2 2058 1,756,2058 18,42,4949 987
10 t108_1_3, dt108_1_3 2058 1,756,2058 18,42,4949 987
11 t108_2_0, dt108_2_0 2058 1,756,2058 18,42,4949 987
12 t108_2_1, dt108_2_1 2058 1,756,2058 18,42,4949 987
13 t108_2_2, dt108_2_2 2058 1,756,2058 18,42,4949 987
14 t108_2_3, dt108_2_3 2058 1,756,2058 18,42,4949 987
15 t108_3_0, dt108_3_0 2058 1,756,2058 18,42,4949 987
16 t108_3_1, dt108_3_1 2058 1,756,2058 18,42,4949 987
17 t108_3_2, dt108_3_2 2058 1,756,2058 18,42,4949 987
18 t108_3_3, dt108_3_3 2058 1,756,2058 18,42,4949 987
19 t108_4_0, dt108_4_0 2058 1,756,2058 18,42,4949 987
20 t108_4_1, dt108_4_1 2058 1,756,2058 18,42,4949 987
21 t108_5_0, dt108_5_0 2058 1,756,2058 18,42,4949 987
22 t108_5_1, dt108_5_1 2058 1,756,2058 18,42,4949 987
23 t108_6_0, dt108_6_0 2058 1,756,2058 18,42,4949 987
24 t108_6_1, dt108_6_1 2058 1,756,2058 18,42,4949 987
25 t108_7_0, dt108_7_0 2058 1,756,2058 18,42,4949 987
26 t108_8_0, dt108_8_0 2058 1,756,2058 18,42,4949 987
27 t108_9_0, dt108_9_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011