Projective Planes of Order 49 Related to t107


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t107 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t107

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t107, dual dt107 28812 14,223,2401 1,494,9823 941
2 t107_0_0, dt107_0_0 2058 1,756,2058 18,42,4949 987
3 t107_0_1, dt107_0_1 2058 1,756,2058 18,42,4949 987
4 t107_0_2, dt107_0_2 2058 1,756,2058 18,42,4949 987
5 t107_0_3, dt107_0_3 2058 1,756,2058 18,42,4949 987
6 t107_0_4, dt107_0_4 2058 1,756,2058 18,42,4949 987
7 t107_0_5, dt107_0_5 2058 1,756,2058 18,42,4949 987
8 t107_0_6, dt107_0_6 2058 1,756,2058 18,42,4949 987
9 t107_0_7, dt107_0_7 2058 1,756,2058 18,42,4949 987
10 t107_1_0, dt107_1_0 2058 1,756,2058 18,42,4949 987
11 t107_1_1, dt107_1_1 2058 1,756,2058 18,42,4949 987
12 t107_1_2, dt107_1_2 2058 1,756,2058 18,42,4949 987
13 t107_1_3, dt107_1_3 2058 1,756,2058 18,42,4949 987
14 t107_1_4, dt107_1_4 2058 1,756,2058 18,42,4949 987
15 t107_1_5, dt107_1_5 2058 1,756,2058 18,42,4949 987
16 t107_1_6, dt107_1_6 2058 1,756,2058 18,42,4949 987
17 t107_1_7, dt107_1_7 2058 1,756,2058 18,42,4949 987
18 t107_2_0, dt107_2_0 2058 1,756,2058 18,42,4949 987
19 t107_2_1, dt107_2_1 2058 1,756,2058 18,42,4949 987
20 t107_2_2, dt107_2_2 2058 1,756,2058 18,42,4949 987
21 t107_2_3, dt107_2_3 2058 1,756,2058 18,42,4949 987
22 t107_2_4, dt107_2_4 2058 1,756,2058 18,42,4949 987
23 t107_2_5, dt107_2_5 2058 1,756,2058 18,42,4949 987
24 t107_2_6, dt107_2_6 2058 1,756,2058 18,42,4949 987
25 t107_2_7, dt107_2_7 2058 1,756,2058 18,42,4949 987
26 t107_3_0, dt107_3_0 2058 1,756,2058 18,42,4949 987
27 t107_3_1, dt107_3_1 2058 1,756,2058 18,42,4949 987
28 t107_3_2, dt107_3_2 2058 1,756,2058 18,42,4949 987
29 t107_3_3, dt107_3_3 2058 1,756,2058 18,42,4949 987
30 t107_3_4, dt107_3_4 2058 1,756,2058 18,42,4949 987
31 t107_3_5, dt107_3_5 2058 1,756,2058 18,42,4949 987
32 t107_3_6, dt107_3_6 2058 1,756,2058 18,42,4949 987
33 t107_3_7, dt107_3_7 2058 1,756,2058 18,42,4949 987
34 t107_4_0, dt107_4_0 2058 1,756,2058 18,42,4949 987
35 t107_4_1, dt107_4_1 2058 1,756,2058 18,42,4949 987
36 t107_4_2, dt107_4_2 2058 1,756,2058 18,42,4949 987
37 t107_4_3, dt107_4_3 2058 1,756,2058 18,42,4949 987
38 t107_4_4, dt107_4_4 2058 1,756,2058 18,42,4949 987
39 t107_4_5, dt107_4_5 2058 1,756,2058 18,42,4949 987
40 t107_4_6, dt107_4_6 2058 1,756,2058 18,42,4949 987
41 t107_4_7, dt107_4_7 2058 1,756,2058 18,42,4949 987
42 t107_5_0, dt107_5_0 2058 1,756,2058 18,42,4949 987
43 t107_5_1, dt107_5_1 2058 1,756,2058 18,42,4949 987
44 t107_5_2, dt107_5_2 2058 1,756,2058 18,42,4949 987
45 t107_5_3, dt107_5_3 2058 1,756,2058 18,42,4949 987
46 t107_5_4, dt107_5_4 2058 1,756,2058 18,42,4949 987
47 t107_5_5, dt107_5_5 2058 1,756,2058 18,42,4949 987
48 t107_5_6, dt107_5_6 2058 1,756,2058 18,42,4949 987
49 t107_5_7, dt107_5_7 2058 1,756,2058 18,42,4949 987
50 t107_6_0, dt107_6_0 2058 1,756,2058 18,42,4949 987
51 t107_6_1, dt107_6_1 2058 1,756,2058 18,42,4949 987
52 t107_6_2, dt107_6_2 2058 1,756,2058 18,42,4949 987
53 t107_6_3, dt107_6_3 2058 1,756,2058 18,42,4949 987
54 t107_6_4, dt107_6_4 2058 1,756,2058 18,42,4949 987
55 t107_6_5, dt107_6_5 2058 1,756,2058 18,42,4949 987
56 t107_6_6, dt107_6_6 2058 1,756,2058 18,42,4949 987
57 t107_6_7, dt107_6_7 2058 1,756,2058 18,42,4949 987
58 t107_7_0, dt107_7_0 2058 1,756,2058 18,42,4949 987
59 t107_7_1, dt107_7_1 2058 1,756,2058 18,42,4949 987
60 t107_7_2, dt107_7_2 2058 1,756,2058 18,42,4949 987
61 t107_7_3, dt107_7_3 2058 1,756,2058 18,42,4949 987
62 t107_7_4, dt107_7_4 2058 1,756,2058 18,42,4949 987
63 t107_7_5, dt107_7_5 2058 1,756,2058 18,42,4949 987
64 t107_7_6, dt107_7_6 2058 1,756,2058 18,42,4949 987
65 t107_7_7, dt107_7_7 2058 1,756,2058 18,42,4949 987
66 t107_8_0, dt107_8_0 2058 1,756,2058 18,42,4949 987
67 t107_8_1, dt107_8_1 2058 1,756,2058 18,42,4949 987
68 t107_8_2, dt107_8_2 2058 1,756,2058 18,42,4949 987
69 t107_8_3, dt107_8_3 2058 1,756,2058 18,42,4949 987
70 t107_8_4, dt107_8_4 2058 1,756,2058 18,42,4949 987
71 t107_8_5, dt107_8_5 2058 1,756,2058 18,42,4949 987
72 t107_8_6, dt107_8_6 2058 1,756,2058 18,42,4949 987
73 t107_8_7, dt107_8_7 2058 1,756,2058 18,42,4949 987
74 t107_9_0, dt107_9_0 2058 1,756,2058 18,42,4949 987
75 t107_9_1, dt107_9_1 2058 1,756,2058 18,42,4949 987
76 t107_9_2, dt107_9_2 2058 1,756,2058 18,42,4949 987
77 t107_9_3, dt107_9_3 2058 1,756,2058 18,42,4949 987
78 t107_9_4, dt107_9_4 2058 1,756,2058 18,42,4949 987
79 t107_9_5, dt107_9_5 2058 1,756,2058 18,42,4949 987
80 t107_9_6, dt107_9_6 2058 1,756,2058 18,42,4949 987
81 t107_9_7, dt107_9_7 2058 1,756,2058 18,42,4949 987
82 t107_10_0, dt107_10_0 2058 1,756,2058 18,42,4949 987
83 t107_10_1, dt107_10_1 2058 1,756,2058 18,42,4949 987
84 t107_10_2, dt107_10_2 2058 1,756,2058 18,42,4949 987
85 t107_10_3, dt107_10_3 2058 1,756,2058 18,42,4949 987
86 t107_10_4, dt107_10_4 2058 1,756,2058 18,42,4949 987
87 t107_10_5, dt107_10_5 2058 1,756,2058 18,42,4949 987
88 t107_10_6, dt107_10_6 2058 1,756,2058 18,42,4949 987
89 t107_10_7, dt107_10_7 2058 1,756,2058 18,42,4949 987
90 t107_11_0, dt107_11_0 2058 1,756,2058 18,42,4949 987
91 t107_11_1, dt107_11_1 2058 1,756,2058 18,42,4949 987
92 t107_11_2, dt107_11_2 2058 1,756,2058 18,42,4949 987
93 t107_11_3, dt107_11_3 2058 1,756,2058 18,42,4949 987
94 t107_11_4, dt107_11_4 2058 1,756,2058 18,42,4949 987
95 t107_11_5, dt107_11_5 2058 1,756,2058 18,42,4949 987
96 t107_11_6, dt107_11_6 2058 1,756,2058 18,42,4949 987
97 t107_11_7, dt107_11_7 2058 1,756,2058 18,42,4949 987
98 t107_12_0, dt107_12_0 2058 1,756,2058 18,42,4949 987
99 t107_12_1, dt107_12_1 2058 1,756,2058 18,42,4949 987
100 t107_12_2, dt107_12_2 2058 1,756,2058 18,42,4949 987
101 t107_12_3, dt107_12_3 2058 1,756,2058 18,42,4949 987
102 t107_12_4, dt107_12_4 2058 1,756,2058 18,42,4949 987
103 t107_12_5, dt107_12_5 2058 1,756,2058 18,42,4949 987
104 t107_12_6, dt107_12_6 2058 1,756,2058 18,42,4949 987
105 t107_12_7, dt107_12_7 2058 1,756,2058 18,42,4949 987
106 t107_13_0, dt107_13_0 2058 1,756,2058 18,42,4949 987
107 t107_13_1, dt107_13_1 2058 1,756,2058 18,42,4949 987
108 t107_13_2, dt107_13_2 2058 1,756,2058 18,42,4949 987
109 t107_13_3, dt107_13_3 2058 1,756,2058 18,42,4949 987
110 t107_13_4, dt107_13_4 2058 1,756,2058 18,42,4949 987
111 t107_13_5, dt107_13_5 2058 1,756,2058 18,42,4949 987
112 t107_13_6, dt107_13_6 2058 1,756,2058 18,42,4949 987
113 t107_13_7, dt107_13_7 2058 1,756,2058 18,42,4949 987
114 t107_14_0, dt107_14_0 2058 1,756,2058 18,42,4949 987
115 t107_14_1, dt107_14_1 2058 1,756,2058 18,42,4949 987
116 t107_14_2, dt107_14_2 2058 1,756,2058 18,42,4949 987
117 t107_14_3, dt107_14_3 2058 1,756,2058 18,42,4949 987
118 t107_14_4, dt107_14_4 2058 1,756,2058 18,42,4949 987
119 t107_14_5, dt107_14_5 2058 1,756,2058 18,42,4949 987
120 t107_14_6, dt107_14_6 2058 1,756,2058 18,42,4949 987
121 t107_14_7, dt107_14_7 2058 1,756,2058 18,42,4949 987
122 t107_15_0, dt107_15_0 2058 1,756,2058 18,42,4949 987
123 t107_15_1, dt107_15_1 2058 1,756,2058 18,42,4949 987
124 t107_15_2, dt107_15_2 2058 1,756,2058 18,42,4949 987
125 t107_15_3, dt107_15_3 2058 1,756,2058 18,42,4949 987
126 t107_15_4, dt107_15_4 2058 1,756,2058 18,42,4949 987
127 t107_15_5, dt107_15_5 2058 1,756,2058 18,42,4949 987
128 t107_15_6, dt107_15_6 2058 1,756,2058 18,42,4949 987
129 t107_15_7, dt107_15_7 2058 1,756,2058 18,42,4949 987
130 t107_16_0, dt107_16_0 2058 1,756,2058 18,42,4949 987
131 t107_16_1, dt107_16_1 2058 1,756,2058 18,42,4949 987
132 t107_16_2, dt107_16_2 2058 1,756,2058 18,42,4949 987
133 t107_16_3, dt107_16_3 2058 1,756,2058 18,42,4949 987
134 t107_16_4, dt107_16_4 2058 1,756,2058 18,42,4949 987
135 t107_16_5, dt107_16_5 2058 1,756,2058 18,42,4949 987
136 t107_16_6, dt107_16_6 2058 1,756,2058 18,42,4949 987
137 t107_16_7, dt107_16_7 2058 1,756,2058 18,42,4949 987
138 t107_17_0, dt107_17_0 2058 1,756,2058 18,42,4949 987
139 t107_17_1, dt107_17_1 2058 1,756,2058 18,42,4949 987
140 t107_17_2, dt107_17_2 2058 1,756,2058 18,42,4949 987
141 t107_17_3, dt107_17_3 2058 1,756,2058 18,42,4949 987
142 t107_17_4, dt107_17_4 2058 1,756,2058 18,42,4949 987
143 t107_17_5, dt107_17_5 2058 1,756,2058 18,42,4949 987
144 t107_17_6, dt107_17_6 2058 1,756,2058 18,42,4949 987
145 t107_17_7, dt107_17_7 2058 1,756,2058 18,42,4949 987
146 t107_18_0, dt107_18_0 2058 1,756,2058 18,42,4949 987
147 t107_18_1, dt107_18_1 2058 1,756,2058 18,42,4949 987
148 t107_18_2, dt107_18_2 2058 1,756,2058 18,42,4949 987
149 t107_18_3, dt107_18_3 2058 1,756,2058 18,42,4949 987
150 t107_18_4, dt107_18_4 2058 1,756,2058 18,42,4949 987
151 t107_18_5, dt107_18_5 2058 1,756,2058 18,42,4949 987
152 t107_18_6, dt107_18_6 2058 1,756,2058 18,42,4949 987
153 t107_18_7, dt107_18_7 2058 1,756,2058 18,42,4949 987
154 t107_19_0, dt107_19_0 2058 1,756,2058 18,42,4949 987
155 t107_19_1, dt107_19_1 2058 1,756,2058 18,42,4949 987
156 t107_19_2, dt107_19_2 2058 1,756,2058 18,42,4949 987
157 t107_19_3, dt107_19_3 2058 1,756,2058 18,42,4949 987
158 t107_19_4, dt107_19_4 2058 1,756,2058 18,42,4949 987
159 t107_19_5, dt107_19_5 2058 1,756,2058 18,42,4949 987
160 t107_19_6, dt107_19_6 2058 1,756,2058 18,42,4949 987
161 t107_19_7, dt107_19_7 2058 1,756,2058 18,42,4949 987
162 t107_20_0, dt107_20_0 2058 1,756,2058 18,42,4949 987
163 t107_20_1, dt107_20_1 2058 1,756,2058 18,42,4949 987
164 t107_20_2, dt107_20_2 2058 1,756,2058 18,42,4949 987
165 t107_20_3, dt107_20_3 2058 1,756,2058 18,42,4949 987
166 t107_20_4, dt107_20_4 2058 1,756,2058 18,42,4949 987
167 t107_20_5, dt107_20_5 2058 1,756,2058 18,42,4949 987
168 t107_20_6, dt107_20_6 2058 1,756,2058 18,42,4949 987
169 t107_20_7, dt107_20_7 2058 1,756,2058 18,42,4949 987
170 t107_21_0, dt107_21_0 2058 1,756,2058 18,42,4949 987
171 t107_21_1, dt107_21_1 2058 1,756,2058 18,42,4949 987
172 t107_21_2, dt107_21_2 2058 1,756,2058 18,42,4949 987
173 t107_21_3, dt107_21_3 2058 1,756,2058 18,42,4949 987
174 t107_21_4, dt107_21_4 2058 1,756,2058 18,42,4949 987
175 t107_21_5, dt107_21_5 2058 1,756,2058 18,42,4949 987
176 t107_21_6, dt107_21_6 2058 1,756,2058 18,42,4949 987
177 t107_21_7, dt107_21_7 2058 1,756,2058 18,42,4949 987
178 t107_22_0, dt107_22_0 2058 1,756,2058 18,42,4949 987
179 t107_22_1, dt107_22_1 2058 1,756,2058 18,42,4949 987
180 t107_22_2, dt107_22_2 2058 1,756,2058 18,42,4949 987
181 t107_22_3, dt107_22_3 2058 1,756,2058 18,42,4949 987
182 t107_22_4, dt107_22_4 2058 1,756,2058 18,42,4949 987
183 t107_22_5, dt107_22_5 2058 1,756,2058 18,42,4949 987
184 t107_22_6, dt107_22_6 2058 1,756,2058 18,42,4949 987
185 t107_22_7, dt107_22_7 2058 1,756,2058 18,42,4949 987
186 t107_23_0, dt107_23_0 2058 1,756,2058 18,42,4949 987
187 t107_23_1, dt107_23_1 2058 1,756,2058 18,42,4949 987
188 t107_23_2, dt107_23_2 2058 1,756,2058 18,42,4949 987
189 t107_23_3, dt107_23_3 2058 1,756,2058 18,42,4949 987
190 t107_24_0, dt107_24_0 2058 1,756,2058 18,42,4949 987
191 t107_24_1, dt107_24_1 2058 1,756,2058 18,42,4949 987
192 t107_24_2, dt107_24_2 2058 1,756,2058 18,42,4949 987
193 t107_24_3, dt107_24_3 2058 1,756,2058 18,42,4949 987
194 t107_25_0, dt107_25_0 2058 1,756,2058 18,42,4949 987
195 t107_25_1, dt107_25_1 2058 1,756,2058 18,42,4949 987
196 t107_25_2, dt107_25_2 2058 1,756,2058 18,42,4949 987
197 t107_25_3, dt107_25_3 2058 1,756,2058 18,42,4949 987
198 t107_26_0, dt107_26_0 2058 1,756,2058 18,42,4949 987
199 t107_26_1, dt107_26_1 2058 1,756,2058 18,42,4949 987
200 t107_26_2, dt107_26_2 2058 1,756,2058 18,42,4949 987
201 t107_26_3, dt107_26_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011