Projective Planes of Order 49 Related to t104


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t104 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t104

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t104, dual dt104 57624 12,210,47,2401 1,492,9810,1967 941
2 t104_0_0, dt104_0_0 2058 1,756,2058 18,42,4949 987
3 t104_0_1, dt104_0_1 2058 1,756,2058 18,42,4949 987
4 t104_0_2, dt104_0_2 2058 1,756,2058 18,42,4949 987
5 t104_0_3, dt104_0_3 2058 1,756,2058 18,42,4949 987
6 t104_0_4, dt104_0_4 2058 1,756,2058 18,42,4949 987
7 t104_0_5, dt104_0_5 2058 1,756,2058 18,42,4949 987
8 t104_0_6, dt104_0_6 2058 1,756,2058 18,42,4949 987
9 t104_0_7, dt104_0_7 2058 1,756,2058 18,42,4949 987
10 t104_1_0, dt104_1_0 2058 1,756,2058 18,42,4949 987
11 t104_1_1, dt104_1_1 2058 1,756,2058 18,42,4949 987
12 t104_1_2, dt104_1_2 2058 1,756,2058 18,42,4949 987
13 t104_1_3, dt104_1_3 2058 1,756,2058 18,42,4949 987
14 t104_1_4, dt104_1_4 2058 1,756,2058 18,42,4949 987
15 t104_1_5, dt104_1_5 2058 1,756,2058 18,42,4949 987
16 t104_1_6, dt104_1_6 2058 1,756,2058 18,42,4949 987
17 t104_1_7, dt104_1_7 2058 1,756,2058 18,42,4949 987
18 t104_2_0, dt104_2_0 2058 1,756,2058 18,42,4949 987
19 t104_2_1, dt104_2_1 2058 1,756,2058 18,42,4949 987
20 t104_2_2, dt104_2_2 2058 1,756,2058 18,42,4949 987
21 t104_2_3, dt104_2_3 2058 1,756,2058 18,42,4949 987
22 t104_2_4, dt104_2_4 2058 1,756,2058 18,42,4949 987
23 t104_2_5, dt104_2_5 2058 1,756,2058 18,42,4949 987
24 t104_2_6, dt104_2_6 2058 1,756,2058 18,42,4949 987
25 t104_2_7, dt104_2_7 2058 1,756,2058 18,42,4949 987
26 t104_3_0, dt104_3_0 2058 1,756,2058 18,42,4949 987
27 t104_3_1, dt104_3_1 2058 1,756,2058 18,42,4949 987
28 t104_3_2, dt104_3_2 2058 1,756,2058 18,42,4949 987
29 t104_3_3, dt104_3_3 2058 1,756,2058 18,42,4949 987
30 t104_3_4, dt104_3_4 2058 1,756,2058 18,42,4949 987
31 t104_3_5, dt104_3_5 2058 1,756,2058 18,42,4949 987
32 t104_3_6, dt104_3_6 2058 1,756,2058 18,42,4949 987
33 t104_3_7, dt104_3_7 2058 1,756,2058 18,42,4949 987
34 t104_4_0, dt104_4_0 2058 1,756,2058 18,42,4949 987
35 t104_4_1, dt104_4_1 2058 1,756,2058 18,42,4949 987
36 t104_4_2, dt104_4_2 2058 1,756,2058 18,42,4949 987
37 t104_4_3, dt104_4_3 2058 1,756,2058 18,42,4949 987
38 t104_4_4, dt104_4_4 2058 1,756,2058 18,42,4949 987
39 t104_4_5, dt104_4_5 2058 1,756,2058 18,42,4949 987
40 t104_4_6, dt104_4_6 2058 1,756,2058 18,42,4949 987
41 t104_4_7, dt104_4_7 2058 1,756,2058 18,42,4949 987
42 t104_5_0, dt104_5_0 2058 1,756,2058 18,42,4949 987
43 t104_5_1, dt104_5_1 2058 1,756,2058 18,42,4949 987
44 t104_5_2, dt104_5_2 2058 1,756,2058 18,42,4949 985
45 t104_5_3, dt104_5_3 2058 1,756,2058 18,42,4949 987
46 t104_5_4, dt104_5_4 2058 1,756,2058 18,42,4949 987
47 t104_5_5, dt104_5_5 2058 1,756,2058 18,42,4949 987
48 t104_5_6, dt104_5_6 2058 1,756,2058 18,42,4949 987
49 t104_5_7, dt104_5_7 2058 1,756,2058 18,42,4949 987
50 t104_6_0, dt104_6_0 2058 1,756,2058 18,42,4949 987
51 t104_6_1, dt104_6_1 2058 1,756,2058 18,42,4949 987
52 t104_6_2, dt104_6_2 2058 1,756,2058 18,42,4949 987
53 t104_6_3, dt104_6_3 2058 1,756,2058 18,42,4949 987
54 t104_6_4, dt104_6_4 2058 1,756,2058 18,42,4949 987
55 t104_6_5, dt104_6_5 2058 1,756,2058 18,42,4949 987
56 t104_6_6, dt104_6_6 2058 1,756,2058 18,42,4949 987
57 t104_6_7, dt104_6_7 2058 1,756,2058 18,42,4949 987
58 t104_7_0, dt104_7_0 2058 1,756,2058 18,42,4949 987
59 t104_7_1, dt104_7_1 2058 1,756,2058 18,42,4949 987
60 t104_7_2, dt104_7_2 2058 1,756,2058 18,42,4949 985
61 t104_7_3, dt104_7_3 2058 1,756,2058 18,42,4949 987
62 t104_8_0, dt104_8_0 2058 1,756,2058 18,42,4949 987
63 t104_8_1, dt104_8_1 2058 1,756,2058 18,42,4949 987
64 t104_8_2, dt104_8_2 2058 1,756,2058 18,42,4949 987
65 t104_8_3, dt104_8_3 2058 1,756,2058 18,42,4949 987
66 t104_9_0, dt104_9_0 2058 1,756,2058 18,42,4949 987
67 t104_9_1, dt104_9_1 2058 1,756,2058 18,42,4949 987
68 t104_9_2, dt104_9_2 2058 1,756,2058 18,42,4949 987
69 t104_9_3, dt104_9_3 2058 1,756,2058 18,42,4949 987
70 t104_10_0, dt104_10_0 2058 1,756,2058 18,42,4949 987
71 t104_10_1, dt104_10_1 2058 1,756,2058 18,42,4949 987
72 t104_10_2, dt104_10_2 2058 1,756,2058 18,42,4949 987
73 t104_10_3, dt104_10_3 2058 1,756,2058 18,42,4949 987
74 t104_11_0, dt104_11_0 2058 1,756,2058 18,42,4949 987
75 t104_11_1, dt104_11_1 2058 1,756,2058 18,42,4949 987
76 t104_11_2, dt104_11_2 2058 1,756,2058 18,42,4949 987
77 t104_11_3, dt104_11_3 2058 1,756,2058 18,42,4949 987
78 t104_12_0, dt104_12_0 2058 1,756,2058 18,42,4949 987
79 t104_12_1, dt104_12_1 2058 1,756,2058 18,42,4949 987
80 t104_12_2, dt104_12_2 2058 1,756,2058 18,42,4949 987
81 t104_12_3, dt104_12_3 2058 1,756,2058 18,42,4949 987
82 t104_13_0, dt104_13_0 2058 1,756,2058 18,42,4949 987
83 t104_13_1, dt104_13_1 2058 1,756,2058 18,42,4949 987
84 t104_13_2, dt104_13_2 2058 1,756,2058 18,42,4949 987
85 t104_13_3, dt104_13_3 2058 1,756,2058 18,42,4949 987
86 t104_14_0, dt104_14_0 2058 1,756,2058 18,42,4949 987
87 t104_14_1, dt104_14_1 2058 1,756,2058 18,42,4949 987
88 t104_14_2, dt104_14_2 2058 1,756,2058 18,42,4949 987
89 t104_14_3, dt104_14_3 2058 1,756,2058 18,42,4949 987
90 t104_15_0, dt104_15_0 2058 1,756,2058 18,42,4949 987
91 t104_15_1, dt104_15_1 2058 1,756,2058 18,42,4949 987
92 t104_15_2, dt104_15_2 2058 1,756,2058 18,42,4949 987
93 t104_15_3, dt104_15_3 2058 1,756,2058 18,42,4949 987
94 t104_16_0, dt104_16_0 2058 1,756,2058 18,42,4949 987
95 t104_16_1, dt104_16_1 2058 1,756,2058 18,42,4949 987
96 t104_16_2, dt104_16_2 2058 1,756,2058 18,42,4949 987
97 t104_16_3, dt104_16_3 2058 1,756,2058 18,42,4949 987
98 t104_17_0, dt104_17_0 2058 1,756,2058 18,42,4949 987
99 t104_17_1, dt104_17_1 2058 1,756,2058 18,42,4949 987
100 t104_18_0, dt104_18_0 2058 1,756,2058 18,42,4949 987
101 t104_18_1, dt104_18_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011