Projective Planes of Order 49 Related to t103


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t103 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t103

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t103, dual dt103 57624 27,49,2401 1,987,1969 941
2 t103_0_0, dt103_0_0 2058 1,756,2058 18,42,4949 987
3 t103_0_1, dt103_0_1 2058 1,756,2058 18,42,4949 987
4 t103_0_2, dt103_0_2 2058 1,756,2058 18,42,4949 987
5 t103_0_3, dt103_0_3 2058 1,756,2058 18,42,4949 987
6 t103_0_4, dt103_0_4 2058 1,756,2058 18,42,4949 987
7 t103_0_5, dt103_0_5 2058 1,756,2058 18,42,4949 985
8 t103_0_6, dt103_0_6 2058 1,756,2058 18,42,4949 987
9 t103_0_7, dt103_0_7 2058 1,756,2058 18,42,4949 987
10 t103_1_0, dt103_1_0 2058 1,756,2058 18,42,4949 987
11 t103_1_1, dt103_1_1 2058 1,756,2058 18,42,4949 987
12 t103_1_2, dt103_1_2 2058 1,756,2058 18,42,4949 987
13 t103_1_3, dt103_1_3 2058 1,756,2058 18,42,4949 987
14 t103_1_4, dt103_1_4 2058 1,756,2058 18,42,4949 987
15 t103_1_5, dt103_1_5 2058 1,756,2058 18,42,4949 987
16 t103_1_6, dt103_1_6 2058 1,756,2058 18,42,4949 987
17 t103_1_7, dt103_1_7 2058 1,756,2058 18,42,4949 987
18 t103_2_0, dt103_2_0 2058 1,756,2058 18,42,4949 987
19 t103_2_1, dt103_2_1 2058 1,756,2058 18,42,4949 987
20 t103_2_2, dt103_2_2 2058 1,756,2058 18,42,4949 987
21 t103_2_3, dt103_2_3 2058 1,756,2058 18,42,4949 987
22 t103_2_4, dt103_2_4 2058 1,756,2058 18,42,4949 987
23 t103_2_5, dt103_2_5 2058 1,756,2058 18,42,4949 987
24 t103_2_6, dt103_2_6 2058 1,756,2058 18,42,4949 987
25 t103_2_7, dt103_2_7 2058 1,756,2058 18,42,4949 987
26 t103_3_0, dt103_3_0 2058 1,756,2058 18,42,4949 987
27 t103_3_1, dt103_3_1 2058 1,756,2058 18,42,4949 987
28 t103_3_2, dt103_3_2 2058 1,756,2058 18,42,4949 987
29 t103_3_3, dt103_3_3 2058 1,756,2058 18,42,4949 987
30 t103_3_4, dt103_3_4 2058 1,756,2058 18,42,4949 987
31 t103_3_5, dt103_3_5 2058 1,756,2058 18,42,4949 987
32 t103_3_6, dt103_3_6 2058 1,756,2058 18,42,4949 987
33 t103_3_7, dt103_3_7 2058 1,756,2058 18,42,4949 987
34 t103_4_0, dt103_4_0 2058 1,756,2058 18,42,4949 987
35 t103_4_1, dt103_4_1 2058 1,756,2058 18,42,4949 987
36 t103_4_2, dt103_4_2 2058 1,756,2058 18,42,4949 987
37 t103_4_3, dt103_4_3 2058 1,756,2058 18,42,4949 987
38 t103_4_4, dt103_4_4 2058 1,756,2058 18,42,4949 987
39 t103_4_5, dt103_4_5 2058 1,756,2058 18,42,4949 987
40 t103_4_6, dt103_4_6 2058 1,756,2058 18,42,4949 987
41 t103_4_7, dt103_4_7 2058 1,756,2058 18,42,4949 987
42 t103_5_0, dt103_5_0 2058 1,756,2058 18,42,4949 987
43 t103_5_1, dt103_5_1 2058 1,756,2058 18,42,4949 987
44 t103_5_2, dt103_5_2 2058 1,756,2058 18,42,4949 987
45 t103_5_3, dt103_5_3 2058 1,756,2058 18,42,4949 987
46 t103_5_4, dt103_5_4 2058 1,756,2058 18,42,4949 987
47 t103_5_5, dt103_5_5 2058 1,756,2058 18,42,4949 987
48 t103_5_6, dt103_5_6 2058 1,756,2058 18,42,4949 987
49 t103_5_7, dt103_5_7 2058 1,756,2058 18,42,4949 987
50 t103_6_0, dt103_6_0 2058 1,756,2058 18,42,4949 987
51 t103_6_1, dt103_6_1 2058 1,756,2058 18,42,4949 987
52 t103_6_2, dt103_6_2 2058 1,756,2058 18,42,4949 987
53 t103_6_3, dt103_6_3 2058 1,756,2058 18,42,4949 987
54 t103_6_4, dt103_6_4 2058 1,756,2058 18,42,4949 987
55 t103_6_5, dt103_6_5 2058 1,756,2058 18,42,4949 987
56 t103_6_6, dt103_6_6 2058 1,756,2058 18,42,4949 987
57 t103_6_7, dt103_6_7 2058 1,756,2058 18,42,4949 987
58 t103_7_0, dt103_7_0 2058 1,756,2058 18,42,4949 987
59 t103_7_1, dt103_7_1 2058 1,756,2058 18,42,4949 987
60 t103_7_2, dt103_7_2 2058 1,756,2058 18,42,4949 987
61 t103_7_3, dt103_7_3 2058 1,756,2058 18,42,4949 987
62 t103_7_4, dt103_7_4 2058 1,756,2058 18,42,4949 987
63 t103_7_5, dt103_7_5 2058 1,756,2058 18,42,4949 987
64 t103_7_6, dt103_7_6 2058 1,756,2058 18,42,4949 987
65 t103_7_7, dt103_7_7 2058 1,756,2058 18,42,4949 987
66 t103_8_0, dt103_8_0 2058 1,756,2058 18,42,4949 987
67 t103_8_1, dt103_8_1 2058 1,756,2058 18,42,4949 987
68 t103_8_2, dt103_8_2 2058 1,756,2058 18,42,4949 987
69 t103_8_3, dt103_8_3 2058 1,756,2058 18,42,4949 987
70 t103_8_4, dt103_8_4 2058 1,756,2058 18,42,4949 987
71 t103_8_5, dt103_8_5 2058 1,756,2058 18,42,4949 987
72 t103_8_6, dt103_8_6 2058 1,756,2058 18,42,4949 987
73 t103_8_7, dt103_8_7 2058 1,756,2058 18,42,4949 987
74 t103_9_0, dt103_9_0 4116 1,78,1424,2058 18,42,49,9824 987
75 t103_9_1, dt103_9_1 4116 1,78,1424,2058 18,42,49,9824 987
76 t103_9_2, dt103_9_2 4116 1,78,1424,2058 18,42,49,9824 987
77 t103_9_3, dt103_9_3 4116 1,78,1424,2058 18,42,49,9824 987
78 t103_9_4, dt103_9_4 4116 1,78,1424,2058 18,42,49,9824 987
79 t103_9_5, dt103_9_5 4116 1,78,1424,2058 18,42,49,9824 987
80 t103_9_6, dt103_9_6 4116 1,78,1424,2058 18,42,49,9824 987
81 t103_9_7, dt103_9_7 4116 1,78,1424,2058 18,42,49,9824 987
82 t103_10_0, dt103_10_0 2058 1,756,2058 18,42,4949 987
83 t103_10_1, dt103_10_1 2058 1,756,2058 18,42,4949 987
84 t103_10_2, dt103_10_2 4116 1,78,1424,2058 12,23,42,497,9821 985
85 t103_10_3, dt103_10_3 4116 1,78,1424,2058 12,23,42,497,9821 987
86 t103_10_4, dt103_10_4 2058 1,756,2058 18,42,4949 987
87 t103_11_0, dt103_11_0 2058 1,756,2058 18,42,4949 987
88 t103_11_1, dt103_11_1 2058 1,756,2058 18,42,4949 987
89 t103_11_2, dt103_11_2 2058 1,756,2058 18,42,4949 987
90 t103_11_3, dt103_11_3 4116 1,78,1424,2058 12,23,42,497,9821 985
91 t103_11_4, dt103_11_4 4116 1,78,1424,2058 12,23,42,497,9821 985
92 t103_12_0, dt103_12_0 2058 1,756,2058 18,42,4949 987
93 t103_12_1, dt103_12_1 2058 1,756,2058 18,42,4949 987
94 t103_12_2, dt103_12_2 4116 1,78,1424,2058 12,23,42,497,9821 987
95 t103_12_3, dt103_12_3 2058 1,756,2058 18,42,4949 987
96 t103_12_4, dt103_12_4 4116 1,78,1424,2058 12,23,42,497,9821 987
97 t103_13_0, dt103_13_0 2058 1,756,2058 18,42,4949 987
98 t103_13_1, dt103_13_1 2058 1,756,2058 18,42,4949 987
99 t103_13_2, dt103_13_2 2058 1,756,2058 18,42,4949 987
100 t103_13_3, dt103_13_3 2058 1,756,2058 18,42,4949 987
101 t103_14_0, dt103_14_0 2058 1,756,2058 18,42,4949 987
102 t103_14_1, dt103_14_1 2058 1,756,2058 18,42,4949 987
103 t103_14_2, dt103_14_2 2058 1,756,2058 18,42,4949 987
104 t103_14_3, dt103_14_3 2058 1,756,2058 18,42,4949 987
105 t103_15_0, dt103_15_0 2058 1,756,2058 18,42,4949 987
106 t103_15_1, dt103_15_1 2058 1,756,2058 18,42,4949 987
107 t103_15_2, dt103_15_2 2058 1,756,2058 18,42,4949 987
108 t103_15_3, dt103_15_3 4116 1,78,1424,2058 12,23,42,497,9821 987
109 t103_15_4, dt103_15_4 4116 1,78,1424,2058 12,23,42,497,9821 985

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011