Projective Planes of Order 49 Related to t102


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t102 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t102

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t102, dual dt102 57624 12,24,410,2401 1,492,984,19610 941
2 t102_0_0, dt102_0_0 2058 1,756,2058 18,42,4949 987
3 t102_0_1, dt102_0_1 2058 1,756,2058 18,42,4949 987
4 t102_0_2, dt102_0_2 2058 1,756,2058 18,42,4949 987
5 t102_0_3, dt102_0_3 2058 1,756,2058 18,42,4949 987
6 t102_0_4, dt102_0_4 2058 1,756,2058 18,42,4949 987
7 t102_0_5, dt102_0_5 2058 1,756,2058 18,42,4949 987
8 t102_0_6, dt102_0_6 2058 1,756,2058 18,42,4949 987
9 t102_0_7, dt102_0_7 2058 1,756,2058 18,42,4949 987
10 t102_1_0, dt102_1_0 2058 1,756,2058 18,42,4949 987
11 t102_1_1, dt102_1_1 2058 1,756,2058 18,42,4949 987
12 t102_1_2, dt102_1_2 2058 1,756,2058 18,42,4949 987
13 t102_1_3, dt102_1_3 2058 1,756,2058 18,42,4949 987
14 t102_1_4, dt102_1_4 2058 1,756,2058 18,42,4949 987
15 t102_1_5, dt102_1_5 2058 1,756,2058 18,42,4949 987
16 t102_1_6, dt102_1_6 2058 1,756,2058 18,42,4949 987
17 t102_1_7, dt102_1_7 2058 1,756,2058 18,42,4949 987
18 t102_2_0, dt102_2_0 2058 1,756,2058 18,42,4949 987
19 t102_2_1, dt102_2_1 2058 1,756,2058 18,42,4949 987
20 t102_2_2, dt102_2_2 2058 1,756,2058 18,42,4949 987
21 t102_2_3, dt102_2_3 2058 1,756,2058 18,42,4949 987
22 t102_2_4, dt102_2_4 2058 1,756,2058 18,42,4949 987
23 t102_2_5, dt102_2_5 2058 1,756,2058 18,42,4949 987
24 t102_2_6, dt102_2_6 2058 1,756,2058 18,42,4949 987
25 t102_2_7, dt102_2_7 2058 1,756,2058 18,42,4949 987
26 t102_3_0, dt102_3_0 2058 1,756,2058 18,42,4949 987
27 t102_3_1, dt102_3_1 2058 1,756,2058 18,42,4949 987
28 t102_3_2, dt102_3_2 2058 1,756,2058 18,42,4949 987
29 t102_3_3, dt102_3_3 2058 1,756,2058 18,42,4949 987
30 t102_3_4, dt102_3_4 2058 1,756,2058 18,42,4949 987
31 t102_3_5, dt102_3_5 2058 1,756,2058 18,42,4949 987
32 t102_3_6, dt102_3_6 2058 1,756,2058 18,42,4949 987
33 t102_3_7, dt102_3_7 2058 1,756,2058 18,42,4949 987
34 t102_4_0, dt102_4_0 2058 1,756,2058 18,42,4949 987
35 t102_4_1, dt102_4_1 2058 1,756,2058 18,42,4949 987
36 t102_4_2, dt102_4_2 2058 1,756,2058 18,42,4949 987
37 t102_4_3, dt102_4_3 2058 1,756,2058 18,42,4949 987
38 t102_4_4, dt102_4_4 2058 1,756,2058 18,42,4949 987
39 t102_4_5, dt102_4_5 2058 1,756,2058 18,42,4949 987
40 t102_4_6, dt102_4_6 2058 1,756,2058 18,42,4949 987
41 t102_4_7, dt102_4_7 2058 1,756,2058 18,42,4949 987
42 t102_5_0, dt102_5_0 2058 1,756,2058 18,42,4949 987
43 t102_5_1, dt102_5_1 2058 1,756,2058 18,42,4949 987
44 t102_5_2, dt102_5_2 2058 1,756,2058 18,42,4949 987
45 t102_5_3, dt102_5_3 2058 1,756,2058 18,42,4949 987
46 t102_5_4, dt102_5_4 2058 1,756,2058 18,42,4949 987
47 t102_5_5, dt102_5_5 2058 1,756,2058 18,42,4949 987
48 t102_5_6, dt102_5_6 2058 1,756,2058 18,42,4949 987
49 t102_5_7, dt102_5_7 2058 1,756,2058 18,42,4949 987
50 t102_6_0, dt102_6_0 2058 1,756,2058 18,42,4949 987
51 t102_6_1, dt102_6_1 2058 1,756,2058 18,42,4949 987
52 t102_6_2, dt102_6_2 2058 1,756,2058 18,42,4949 987
53 t102_6_3, dt102_6_3 2058 1,756,2058 18,42,4949 987
54 t102_6_4, dt102_6_4 2058 1,756,2058 18,42,4949 987
55 t102_6_5, dt102_6_5 2058 1,756,2058 18,42,4949 987
56 t102_6_6, dt102_6_6 2058 1,756,2058 18,42,4949 987
57 t102_6_7, dt102_6_7 2058 1,756,2058 18,42,4949 987
58 t102_7_0, dt102_7_0 2058 1,756,2058 18,42,4949 987
59 t102_7_1, dt102_7_1 2058 1,756,2058 18,42,4949 987
60 t102_7_2, dt102_7_2 2058 1,756,2058 18,42,4949 987
61 t102_7_3, dt102_7_3 2058 1,756,2058 18,42,4949 987
62 t102_7_4, dt102_7_4 2058 1,756,2058 18,42,4949 987
63 t102_7_5, dt102_7_5 2058 1,756,2058 18,42,4949 987
64 t102_7_6, dt102_7_6 2058 1,756,2058 18,42,4949 987
65 t102_7_7, dt102_7_7 2058 1,756,2058 18,42,4949 987
66 t102_8_0, dt102_8_0 2058 1,756,2058 18,42,4949 987
67 t102_8_1, dt102_8_1 2058 1,756,2058 18,42,4949 987
68 t102_8_2, dt102_8_2 2058 1,756,2058 18,42,4949 987
69 t102_8_3, dt102_8_3 2058 1,756,2058 18,42,4949 987
70 t102_8_4, dt102_8_4 2058 1,756,2058 18,42,4949 987
71 t102_8_5, dt102_8_5 2058 1,756,2058 18,42,4949 987
72 t102_8_6, dt102_8_6 2058 1,756,2058 18,42,4949 987
73 t102_8_7, dt102_8_7 2058 1,756,2058 18,42,4949 987
74 t102_9_0, dt102_9_0 2058 1,756,2058 18,42,4949 987
75 t102_9_1, dt102_9_1 2058 1,756,2058 18,42,4949 987
76 t102_9_2, dt102_9_2 2058 1,756,2058 18,42,4949 987
77 t102_9_3, dt102_9_3 2058 1,756,2058 18,42,4949 987
78 t102_9_4, dt102_9_4 2058 1,756,2058 18,42,4949 987
79 t102_9_5, dt102_9_5 2058 1,756,2058 18,42,4949 987
80 t102_9_6, dt102_9_6 2058 1,756,2058 18,42,4949 987
81 t102_9_7, dt102_9_7 2058 1,756,2058 18,42,4949 987
82 t102_10_0, dt102_10_0 2058 1,756,2058 18,42,4949 987
83 t102_10_1, dt102_10_1 2058 1,756,2058 18,42,4949 987
84 t102_10_2, dt102_10_2 2058 1,756,2058 18,42,4949 987
85 t102_10_3, dt102_10_3 2058 1,756,2058 18,42,4949 987
86 t102_11_0, dt102_11_0 2058 1,756,2058 18,42,4949 987
87 t102_11_1, dt102_11_1 2058 1,756,2058 18,42,4949 987
88 t102_11_2, dt102_11_2 2058 1,756,2058 18,42,4949 987
89 t102_11_3, dt102_11_3 2058 1,756,2058 18,42,4949 987
90 t102_12_0, dt102_12_0 2058 1,756,2058 18,42,4949 987
91 t102_12_1, dt102_12_1 2058 1,756,2058 18,42,4949 987
92 t102_12_2, dt102_12_2 2058 1,756,2058 18,42,4949 987
93 t102_12_3, dt102_12_3 2058 1,756,2058 18,42,4949 987
94 t102_13_0, dt102_13_0 2058 1,756,2058 18,42,4949 987
95 t102_13_1, dt102_13_1 2058 1,756,2058 18,42,4949 987
96 t102_13_2, dt102_13_2 2058 1,756,2058 18,42,4949 987
97 t102_13_3, dt102_13_3 2058 1,756,2058 18,42,4949 987
98 t102_14_0, dt102_14_0 4116 1,78,1424,2058 18,42,49,9824 987
99 t102_14_1, dt102_14_1 4116 1,78,1424,2058 18,42,49,9824 987
100 t102_14_2, dt102_14_2 4116 1,78,1424,2058 18,42,49,9824 987
101 t102_14_3, dt102_14_3 4116 1,78,1424,2058 18,42,49,9824 987
102 t102_15_0, dt102_15_0 4116 1,78,1424,2058 18,42,49,9824 987
103 t102_15_1, dt102_15_1 4116 1,78,1424,2058 18,42,49,9824 987
104 t102_15_2, dt102_15_2 4116 1,78,1424,2058 18,42,49,9824 987
105 t102_15_3, dt102_15_3 4116 1,78,1424,2058 18,42,49,9824 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011