Projective Planes of Order 49 Related to t100


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t100 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t100

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t100, dual dt100 57624 14,25,49,2401 1,494,985,1969 941
2 t100_0_0, dt100_0_0 2058 1,756,2058 18,42,4949 987
3 t100_0_1, dt100_0_1 2058 1,756,2058 18,42,4949 987
4 t100_0_2, dt100_0_2 2058 1,756,2058 18,42,4949 987
5 t100_0_3, dt100_0_3 2058 1,756,2058 18,42,4949 987
6 t100_0_4, dt100_0_4 2058 1,756,2058 18,42,4949 987
7 t100_0_5, dt100_0_5 2058 1,756,2058 18,42,4949 987
8 t100_0_6, dt100_0_6 2058 1,756,2058 18,42,4949 987
9 t100_0_7, dt100_0_7 2058 1,756,2058 18,42,4949 987
10 t100_1_0, dt100_1_0 2058 1,756,2058 18,42,4949 987
11 t100_1_1, dt100_1_1 2058 1,756,2058 18,42,4949 987
12 t100_1_2, dt100_1_2 2058 1,756,2058 18,42,4949 987
13 t100_1_3, dt100_1_3 2058 1,756,2058 18,42,4949 987
14 t100_1_4, dt100_1_4 2058 1,756,2058 18,42,4949 985
15 t100_1_5, dt100_1_5 2058 1,756,2058 18,42,4949 987
16 t100_1_6, dt100_1_6 2058 1,756,2058 18,42,4949 987
17 t100_1_7, dt100_1_7 2058 1,756,2058 18,42,4949 987
18 t100_2_0, dt100_2_0 2058 1,756,2058 18,42,4949 987
19 t100_2_1, dt100_2_1 2058 1,756,2058 18,42,4949 987
20 t100_2_2, dt100_2_2 2058 1,756,2058 18,42,4949 987
21 t100_2_3, dt100_2_3 2058 1,756,2058 18,42,4949 987
22 t100_2_4, dt100_2_4 2058 1,756,2058 18,42,4949 987
23 t100_2_5, dt100_2_5 2058 1,756,2058 18,42,4949 987
24 t100_2_6, dt100_2_6 2058 1,756,2058 18,42,4949 987
25 t100_2_7, dt100_2_7 2058 1,756,2058 18,42,4949 987
26 t100_3_0, dt100_3_0 2058 1,756,2058 18,42,4949 987
27 t100_3_1, dt100_3_1 2058 1,756,2058 18,42,4949 987
28 t100_3_2, dt100_3_2 2058 1,756,2058 18,42,4949 987
29 t100_3_3, dt100_3_3 2058 1,756,2058 18,42,4949 987
30 t100_3_4, dt100_3_4 2058 1,756,2058 18,42,4949 987
31 t100_3_5, dt100_3_5 2058 1,756,2058 18,42,4949 987
32 t100_3_6, dt100_3_6 2058 1,756,2058 18,42,4949 987
33 t100_3_7, dt100_3_7 2058 1,756,2058 18,42,4949 987
34 t100_4_0, dt100_4_0 2058 1,756,2058 18,42,4949 987
35 t100_4_1, dt100_4_1 2058 1,756,2058 18,42,4949 987
36 t100_4_2, dt100_4_2 2058 1,756,2058 18,42,4949 987
37 t100_4_3, dt100_4_3 2058 1,756,2058 18,42,4949 987
38 t100_4_4, dt100_4_4 2058 1,756,2058 18,42,4949 987
39 t100_4_5, dt100_4_5 2058 1,756,2058 18,42,4949 987
40 t100_4_6, dt100_4_6 2058 1,756,2058 18,42,4949 987
41 t100_4_7, dt100_4_7 2058 1,756,2058 18,42,4949 987
42 t100_5_0, dt100_5_0 2058 1,756,2058 18,42,4949 987
43 t100_5_1, dt100_5_1 2058 1,756,2058 18,42,4949 987
44 t100_5_2, dt100_5_2 2058 1,756,2058 18,42,4949 987
45 t100_5_3, dt100_5_3 2058 1,756,2058 18,42,4949 987
46 t100_5_4, dt100_5_4 2058 1,756,2058 18,42,4949 987
47 t100_5_5, dt100_5_5 2058 1,756,2058 18,42,4949 987
48 t100_5_6, dt100_5_6 2058 1,756,2058 18,42,4949 987
49 t100_5_7, dt100_5_7 2058 1,756,2058 18,42,4949 987
50 t100_6_0, dt100_6_0 2058 1,756,2058 18,42,4949 987
51 t100_6_1, dt100_6_1 2058 1,756,2058 18,42,4949 987
52 t100_6_2, dt100_6_2 2058 1,756,2058 18,42,4949 987
53 t100_6_3, dt100_6_3 2058 1,756,2058 18,42,4949 987
54 t100_6_4, dt100_6_4 2058 1,756,2058 18,42,4949 987
55 t100_6_5, dt100_6_5 2058 1,756,2058 18,42,4949 987
56 t100_6_6, dt100_6_6 2058 1,756,2058 18,42,4949 987
57 t100_6_7, dt100_6_7 2058 1,756,2058 18,42,4949 987
58 t100_7_0, dt100_7_0 2058 1,756,2058 18,42,4949 987
59 t100_7_1, dt100_7_1 2058 1,756,2058 18,42,4949 987
60 t100_7_2, dt100_7_2 2058 1,756,2058 18,42,4949 987
61 t100_7_3, dt100_7_3 2058 1,756,2058 18,42,4949 987
62 t100_7_4, dt100_7_4 2058 1,756,2058 18,42,4949 987
63 t100_7_5, dt100_7_5 2058 1,756,2058 18,42,4949 987
64 t100_7_6, dt100_7_6 2058 1,756,2058 18,42,4949 987
65 t100_7_7, dt100_7_7 2058 1,756,2058 18,42,4949 987
66 t100_8_0, dt100_8_0 2058 1,756,2058 18,42,4949 987
67 t100_8_1, dt100_8_1 2058 1,756,2058 18,42,4949 987
68 t100_8_2, dt100_8_2 2058 1,756,2058 18,42,4949 987
69 t100_8_3, dt100_8_3 2058 1,756,2058 18,42,4949 987
70 t100_8_4, dt100_8_4 2058 1,756,2058 18,42,4949 987
71 t100_8_5, dt100_8_5 2058 1,756,2058 18,42,4949 987
72 t100_8_6, dt100_8_6 2058 1,756,2058 18,42,4949 987
73 t100_8_7, dt100_8_7 2058 1,756,2058 18,42,4949 987
74 t100_9_0, dt100_9_0 2058 1,756,2058 18,42,4949 987
75 t100_9_1, dt100_9_1 2058 1,756,2058 18,42,4949 987
76 t100_9_2, dt100_9_2 2058 1,756,2058 18,42,4949 987
77 t100_9_3, dt100_9_3 2058 1,756,2058 18,42,4949 987
78 t100_10_0, dt100_10_0 2058 1,756,2058 18,42,4949 987
79 t100_10_1, dt100_10_1 2058 1,756,2058 18,42,4949 987
80 t100_10_2, dt100_10_2 2058 1,756,2058 18,42,4949 987
81 t100_10_3, dt100_10_3 2058 1,756,2058 18,42,4949 987
82 t100_11_0, dt100_11_0 2058 1,756,2058 18,42,4949 987
83 t100_11_1, dt100_11_1 2058 1,756,2058 18,42,4949 987
84 t100_11_2, dt100_11_2 2058 1,756,2058 18,42,4949 987
85 t100_11_3, dt100_11_3 2058 1,756,2058 18,42,4949 987
86 t100_12_0, dt100_12_0 2058 1,756,2058 18,42,4949 987
87 t100_12_1, dt100_12_1 2058 1,756,2058 18,42,4949 987
88 t100_12_2, dt100_12_2 2058 1,756,2058 18,42,4949 987
89 t100_12_3, dt100_12_3 2058 1,756,2058 18,42,4949 987
90 t100_13_0, dt100_13_0 2058 1,756,2058 18,42,4949 987
91 t100_13_1, dt100_13_1 2058 1,756,2058 18,42,4949 987
92 t100_13_2, dt100_13_2 2058 1,756,2058 18,42,4949 987
93 t100_13_3, dt100_13_3 2058 1,756,2058 18,42,4949 987
94 t100_14_0, dt100_14_0 2058 1,756,2058 18,42,4949 987
95 t100_14_1, dt100_14_1 2058 1,756,2058 18,42,4949 987
96 t100_15_0, dt100_15_0 2058 1,756,2058 18,42,4949 987
97 t100_15_1, dt100_15_1 2058 1,756,2058 18,42,4949 987
98 t100_16_0, dt100_16_0 2058 1,756,2058 18,42,4949 987
99 t100_16_1, dt100_16_1 2058 1,756,2058 18,42,4949 987
100 t100_17_0, dt100_17_0 2058 1,756,2058 18,42,4949 987
101 t100_17_1, dt100_17_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011