This site is intended to provide a current list of known projective planes of order 25. I have listed the 193 planes of which I am aware (5 self-dual planes plus 94 dual pairs). The planes are listed in increasing order of 5-rank, the most readily computable isomorphism invariant. For basic definitions and results on the subject of projective planes, please refer to
More details on the new planes w1 and w2 can be found in
I have made extensive use of Brendan McKay's celebrated software package nauty for computing graph automorphisms; also the computational algebra package GAP (Graphs, Algorithms and Programming) for some of the group computations (e.g. computing conjugacy classes of involutions in groups).
If you are aware of planes which I have overlooked in my list, I would appreciate an email message () from you.
I have also provided
No. | Plane | Description | 5-rank | |Autgp| | Point orbit lengths | Line orbit lengths | Derived Planes | Subplanes | Fingerprint |
---|---|---|---|---|---|---|---|---|---|
1* | s1 | Desarguesian | 226 | 304668000000 | 651 | 651 | s2 | 5409500 | s1 |
2 | b4, b4Dual | Hering | 239 | 1800000 | 6,20,625 | 1,150,500 | none ; b4a,b4b | 257300000 519500 | b4, b4Dual |
3 | s2, s2Dual | Hall | 251 | 3600000 | 6,20,625 | 1,150,500 | s1,s3,s4 ; s2a,s2b | 242600000 519500 | s2, s2Dual |
4 | a3, a3Dual | Walker | 253 | 1500000 | 1,25,625 | 1,25,625 | a7 ; a3a,a3b | 263000000 519500 | a3, a3Dual |
5 | a2, a2Dual | Dickson nearfield | 255 | 2880000 | 2,24,625 | 1,50,600 | a2 ; a2a,a2b | 258080000 519500 | a2, a2Dual |
6 | a4, a4Dual | Rao | 256 | 180000 | 2,6,18,625 | 1,50,150,450 | a2,a8 ; a4a,a4b,a4c,a4d | 259070000 519500 | a4, a4Dual |
7 | a8, a8Dual | Czerwinski & Oakden | 257 | 120000 | 1,1,24,625 | 1,25,25,600 | a4 ; a8a,a8b,a8c,a8d,a8e,a8f | 256640000 519500 | a8, a8Dual |
8 | s4, s4Dual | subregular (exceptional nearfield) | 258 | 1440000 | 2,24,625 | 1,50,600 | s2,s5 ; s4a,s4b | 255680000 519500 | s4, s4Dual |
9 | b1, b1Dual | Foulser | 258 | 130000 | 26,625 | 1,650 | none ; b1a,b1b,b1c | 255510000 519500 | b1, b1Dual |
10 | b6, b6Dual | Czerwinski & Oakden | 258 | 120000 | 2,122,625 | 1,50,3002 | none ; b6a,b6b,b6c,b6d,b6e | 252200000 519500 | b6, b6Dual |
11 | s5, s5Dual | subregular | 259 | 720000 | 8,18,625 | 1,200,450 | s4 ; s5a,s5b,s5c | 255980000 519500 | s5, s5Dual |
12 | a6, a6Dual | Czerwinski & Oakden | 259 | 360000 | 6,8,12,625 | 1,150,200,300 | a1 ; a6a,a6b,a6c | 252110000 519500 | a6, a6Dual |
13 | a5, a5Dual | Rao | 259 | 60000 | 42,6,12,625 | 1,1002,150,300 | a1 ; a5a,a5b,a5c,a5d,a5e,a5f,a5g | 254180000 519500 | a5, a5Dual |
14 | s3, s3Dual | subregular | 260 | 720000 | 2,24,625 | 1,50,600 | s2 ; s3a,s3b | 250880000 519500 | s3, s3Dual |
15 | a7, a7Dual | Rao | 260 | 300000 | 6,20,625 | 1,150,500 | a3 ; a7a,a7b,a7c | 246800000 519500 | a7, a7Dual |
16 | b5, b5Dual | Walker | 261 | 4800000 | 10,16,625 | 1,250,400 | none ; b5a,b5b | 2110800000 519500 | b5, b5Dual |
17 | b7, b7Dual | Czerwinski & Oakden | 261 | 240000 | 4,6,16,625 | 1,100,150,400 | none ; b7a,b7b,b7c,b7d | 258860000 519500 | b7, b7Dual |
18 | a1, a1Dual | Czerwinski & Oakden | 262 | 360000 | 6,8,12,625 | 1,150,200,300 | a5,a6 ; a1a,a1b,a1c | 253400000 519500 | a1, a1Dual |
19 | b2, b2Dual | Foulser | 262 | 130000 | 26,625 | 1,650 | none ; b2a,b2b,b2c | 255510000 519500 | b2, b2Dual |
20 | b8, b8Dual | Czerwinski & Oakden | 262 | 80000 | 2,8,16,625 | 1,50,200,400 | none ; b8a,b8b,b8c,b8d,b8e,b8f,b8g | 257120000 519500 | b8, b8Dual |
21 | a3a, a3aDual | 262 | 50000 | 1,5,20,625 | 1,25,125,500 | a3Dual ; a7aDual | 240850000 51375 | a3a, a3aDual | |
22 | b4a, b4aDual | 262 | 10000 | 1,5,20,125,2502 | 1,252,502,500 | b4Dual ; none | 240620000 51125 | b4a, b4aDual | |
23 | b3, b3Dual | Czerwinski & Oakden | 264 | 90000 | 2,6,18,625 | 1,50,150,450 | none ; b3a,b3b,b3c,b3d,b3e | 253190000 519500 | b3, b3Dual |
24 | b4b, b4bDual | 264 | 3000 | 32,20,25,754,1502 | 1,156,302,500 | b4Dual ; none | 240531500 5975 | b4b, b4bDual | |
25 | a8a, a8aDual | 266 | 12000 | 6,20,25,600 | 1,30,120,500 | a8Dual ; none | 243080000 5900 | a8a, a8aDual | |
26* | h1 | (Ordinary) Hughes | 268 | 744000 | 31,620 | 31,620 | h1a | 238812000 331000 54620 | h1 |
27 | a2a, a2aDual | 268 | 48000 | 6,20,25,600 | 1,30,120,500 | a2Dual ; none | 242348000 51500 | a2a, a2aDual | |
28* | s2a | 268 | 20000 | 1,5,20,25,502,500 | 1,5,20,25,502,500 | s2Dual | 235110000 52000 | s2a | |
29 | a7a, a7aDual | 269 | 10000 | 1,5,20,25,100,500 | 1,5,20,25,100,500 | a7Dual ; a3aDual | 239240000 51375 | a7a, a7aDual | |
30 | s4a, s4aDual | 271 | 24000 | 6,20,25,600 | 1,30,120,500 | s4Dual ; s5aDual | 241076000 51500 | s4a, s4aDual | |
31* | h2 | Exceptional Hughes | 272 | 1488000 | 31,620 | 31,620 | h2a | 247616000 54620 | h2 |
32 | s2b, s2bDual | 272 | 6000 | 32,20,25,1504 | 1,152,304,500 | s2Dual ; s3bDual,s4bDual | 239453000 51950 | s2b, s2bDual | |
33 | s3a, s3aDual | 273 | 12000 | 32,20,25,3002 | 1,152,602,500 | s3Dual ; none | 240926000 5900 | s3a, s3aDual | |
34 | b5a, b5aDual | 274 | 16000 | 2,4,20,25,200,400 | 1,10,20,40,80,500 | b5Dual ; none | 251432000 51100 | b5a, b5aDual | |
35 | a8b, a8bDual | 274 | 6000 | 32,20,25,3002 | 1,152,602,500 | a8Dual ; none | 240716000 51050 | a8b, a8bDual | |
36* | h1b | 274 | 4000 | 1,5,20,25,502,500 | 1,5,20,25,502,500 | h1aDual | 238446000 34000 51120 | h1b | |
37 | h1a, h1aDual | 275 | 24000 | 12,22,20,25,600 | 12,24,25,502,500 | h1 ; h1b | 238644000 33000 51020 | h1a, h1aDual | |
38 | b8a, b8aDual | 275 | 4000 | 12,22,20,25,1002,2002 | 1,52,102,202,402,500 | b8Dual ; none | 240760000 51100 | b8a, b8aDual | |
39 | a4a, a4aDual | 275 | 3000 | 32,20,25,1504 | 1,152,304,500 | a4Dual ; none | 241691000 51125 | a4a, a4aDual | |
40 | b6a, b6aDual | 275 | 2000 | 12,22,20,25,1006 | 1,52,102,206,500 | b6Dual ; none | 240308000 5850 | b6a, b6aDual | |
41 | b7a, b7aDual | 276 | 4000 | 12,22,20,25,1002,2002 | 1,52,102,202,402,500 | b7Dual ; none | 240084000 5900 | b7a, b7aDual | |
42 | s5a, s5aDual | 276 | 4000 | 12,4,20,25,502,100,2002 | 1,52,102,202,402,500 | s5Dual ; s4aDual | 241151000 51200 | s5a, s5aDual | |
43 | a2b, a2bDual | 276 | 4000 | 12,4,20,25,502,100,2002 | 1,52,102,202,402,500 | a2Dual ; a4cDual | 243569000 51600 | a2b, a2bDual | |
44 | a8c, a8cDual | 276 | 4000 | 23,20,25,2003 | 1,103,403,500 | a8Dual ; none | 240996000 51000 | a8c, a8cDual | |
45 | b7b, b7bDual | 276 | 2000 | 12,22,20,25,1006 | 1,52,102,206,500 | b7Dual ; none | 239706000 51050 | b7b, b7bDual | |
46 | a5a, a5aDual | 276 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | a5Dual ; a1aDual | 239963000 5925 | a5a, a5aDual | |
47 | a1a, a1aDual | 277 | 2000 | 12,22,20,25,1006 | 1,52,102,206,500 | a1Dual ; a5aDual,a6aDual | 241154000 51175 | a1a, a1aDual | |
48 | a4b, a4bDual | 277 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | a4Dual ; a8dDual | 242115500 51075 | a4b, a4bDual | |
49 | a4c, a4cDual | 277 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | a4Dual ; a2bDual | 240980000 51000 | a4c, a4cDual | |
50 | b6b, b6bDual | 277 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | b6Dual ; none | 240240500 5825 | b6b, b6bDual | |
51 | b8b, b8bDual | 277 | 500 | 16,20,2525 | 1,530,500 | b8Dual ; none | 240395000 5925 | b8b, b8bDual | |
52 | a4d, a4dDual | 277 | 500 | 16,20,2525 | 1,530,500 | a4Dual ; a8eDual,a8fDual | 242190500 51150 | a4d, a4dDual | |
53 | b5b, b5bDual | 278 | 10000 | 1,5,20,125,2502 | 1,252,502,500 | b5Dual ; none | 250682500 51000 | b5b, b5bDual | |
54 | b7c, b7cDual | 278 | 2000 | 12,4,20,25,502,1005 | 1,52,102,206,500 | b7Dual ; none | 239690500 51000 | b7c, b7cDual | |
55 | a3b, a3bDual | 278 | 2000 | 12,4,20,25,502,1005 | 1,52,102,206,500 | a3Dual ; a7bDual | 240428000 51075 | a3b, a3bDual | |
56 | a6a, a6aDual | 278 | 2000 | 12,4,20,25,502,1005 | 1,52,102,206,500 | a6Dual ; a1aDual | 239882500 51025 | a6a, a6aDual | |
57 | a6b, a6bDual | 278 | 1500 | 32,20,25,758 | 1,1510,500 | a6Dual ; none | 239174000 51050 | a6b, a6bDual | |
58 | a6c, a6cDual | 278 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | a6Dual ; none | 238948500 51075 | a6c, a6cDual | |
59 | a5b, a5bDual | 278 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; none | 239882000 5850 | a5b, a5bDual | |
60 | a5c, a5cDual | 278 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; none | 239749500 51025 | a5c, a5cDual | |
61 | a5d, a5dDual | 278 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; none | 240096000 5975 | a5d, a5dDual | |
62 | a8d, a8dDual | 278 | 500 | 16,20,2525 | 1,530,500 | a8Dual ; a4bDual | 241253000 5950 | a8d, a8dDual | |
63 | a8e, a8eDual | 278 | 500 | 16,20,2525 | 1,530,500 | a8Dual ; a4dDual | 241176500 5950 | a8e, a8eDual | |
64 | a8f, a8fDual | 278 | 500 | 16,20,2525 | 1,530,500 | a8Dual ; a4dDual | 241358500 5925 | a8f, a8fDual | |
65 | h2a, h2aDual | 279 | 48000 | 12,4,20,25,600 | 12,24,25,100,500 | h2, h2b ; none | 241160000 51620 | h2a, h2aDual | |
66 | w1, w1Dual | Wyoming | 279 | 19200 | 12,24,25,600 | 12,24,25,600 | w2 ; none | 242390400 32400 51100 | w1, w1Dual |
67 | b8c, b8cDual | 279 | 2000 | 12,22,20,25,1006 | 1,52,102,206,500 | b8Dual ; none | 241082000 51100 | b8c, b8cDual | |
68 | s4b, s4bDual | 279 | 2000 | 12,22,20,25,504,1004 | 1,52,106,204,500 | s4Dual ; s2bDual,s5cDual | 240268000 51300 | s4b, s4bDual | |
69 | a7b, a7bDual | 279 | 2000 | 12,22,20,25,1006 | 1,52,102,206,500 | a7Dual ; a3bDual | 238834000 51175 | a7b, a7bDual | |
70 | b3a, b3aDual | 279 | 1500 | 32,20,25,758 | 1,1510,500 | b3Dual ; none | 239174000 51050 | b3a, b3aDual | |
71 | a1b, a1bDual | 279 | 1500 | 32,20,25,758 | 1,1510,500 | a1Dual ; a5gDual | 240705500 51275 | a1b, a1bDual | |
72 | a1c, a1cDual | 279 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | a1Dual ; none | 239467000 51050 | a1c, a1cDual | |
73 | b6c, b6cDual | 279 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | b6Dual ; none | 240192500 5775 | b6c, b6cDual | |
74 | b8d, b8dDual | 279 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | b8Dual ; none | 240465500 5975 | b8d, b8dDual | |
75 | s3b, s3bDual | 279 | 1000 | 12,22,20,255,5010 | 1,56,1012,500 | s3Dual ; s2bDual | 237683500 51200 | s3b, s3bDual | |
76 | b3b, b3bDual | 279 | 500 | 16,20,2525 | 1,530,500 | b3Dual ; none | 239136000 5925 | b3b, b3bDual | |
77 | b3c, b3cDual | 279 | 500 | 16,20,2525 | 1,530,500 | b3Dual ; none | 239433500 5900 | b3c, b3cDual | |
78 | b3d, b3dDual | 279 | 500 | 16,20,2525 | 1,530,500 | b3Dual ; none | 239758500 51025 | b3d, b3dDual | |
79 | b3e, b3eDual | 279 | 500 | 16,20,2525 | 1,530,500 | b3Dual ; none | 239707000 5975 | b3e, b3eDual | |
80 | a7c, a7cDual | 279 | 500 | 16,20,2525 | 1,530,500 | a7Dual ; none | 238175500 51000 | a7c, a7cDual | |
81 | b1a, b1aDual | 279 | 500 | 16,20,2525 | 1,530,500 | b1Dual ; none | 240329500 5875 | b1a, b1aDual | |
82 | b1b, b1bDual | 279 | 500 | 16,20,2525 | 1,530,500 | b1Dual ; none | 240605500 5850 | b1b, b1bDual | |
83 | b1c, b1cDual | 279 | 500 | 16,20,2525 | 1,530,500 | b1Dual ; none | 240532500 5900 | b1c, b1cDual | |
84 | b2a, b2aDual | 279 | 500 | 16,20,2525 | 1,530,500 | b2Dual ; none | 240417000 5875 | b2a, b2aDual | |
85 | b2b, b2bDual | 279 | 500 | 16,20,2525 | 1,530,500 | b2Dual ; none | 240542500 5925 | b2b, b2bDual | |
86 | b2c, b2cDual | 279 | 500 | 16,20,2525 | 1,530,500 | b2Dual ; none | 240415000 5825 | b2c, b2cDual | |
87 | b6d, b6dDual | 279 | 500 | 16,20,2525 | 1,530,500 | b6Dual ; none | 240587000 5850 | b6d, b6dDual | |
88 | b6e, b6eDual | 279 | 500 | 16,20,2525 | 1,530,500 | b6Dual ; none | 240354500 5825 | b6e, b6eDual | |
89 | b8e, b8eDual | 279 | 500 | 16,20,2525 | 1,530,500 | b8Dual ; none | 240196000 5950 | b8e, b8eDual | |
90 | b8f, b8fDual | 279 | 500 | 16,20,2525 | 1,530,500 | b8Dual ; none | 240494000 5925 | b8f, b8fDual | |
91 | b8g, b8gDual | 279 | 500 | 16,20,2525 | 1,530,500 | b8Dual ; none | 240138000 5875 | b8g, b8gDual | |
92 | s5b, s5bDual | 280 | 3000 | 32,20,25,754,1502 | 1,156,302,500 | s5Dual ; none | 240216500 51125 | s5b, s5bDual | |
93 | s5c, s5cDual | 280 | 2000 | 12,22,20,25,504,1004 | 1,52,106,204,500 | s5Dual ; s4bDual | 240359000 51100 | s5c, s5cDual | |
94 | a5e, a5eDual | 280 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; none | 239469500 51000 | a5e, a5eDual | |
95 | a5f, a5fDual | 280 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; none | 239553000 5875 | a5f, a5fDual | |
96 | a5g, a5gDual | 280 | 500 | 16,20,2525 | 1,530,500 | a5Dual ; a1bDual | 239942000 51000 | a5g, a5gDual | |
97 | b7d, b7dDual | 280 | 500 | 16,20,2525 | 1,530,500 | b7Dual ; none | 240349500 5975 | b7d, b7dDual | |
98 | w2, w2Dual | Wyoming | 286 | 3200 | 2,42,16,25,200,400 | 1,10,20,40,80,100,400 | w1 ; none | 238559200 5420 | w2, w2Dual |
99 | h2b, h2bDual | 300 | 9600 | 4,6,16,25,600 | 1,30,100,120,400 | h2a ; none | 239224800 5420 | h2b, h2bDual |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.
The image below illustrates connections between the planes we have listed. Each circle represents a dual pair of planes (or a self-dual plane), and most of these have not been labeled. Yellow bonds between planes represent the derivability of one plane from another (a symmetric relation). Blue bonds indicate pairs of planes which share a semibiplane.
I've included the exhaustive list of all 21 translations planes of order 25 due to T. Czerwinski and D. Oakden, ‘The translation planes of order twenty-five’ J. Comb. Theory A 59 (1992), 193-217. Following their notation, I denote these planes a1-a8, b1-b8, s1-s5. Also included are the ordinary Hughes plane h1 and the exceptional Hughes plane h2, constructed using the regular and irregular nearfields of order 25 respectively; see H. Luneburg, ‘Characterizations of the generalized Hughes planes’ Canad. J. Math. 28 (1976), 376-402. With the exception of the Wyoming planes w1 and w2, all remaining planes listed are constructed by repeatedly dualising and deriving the translation planes and Hughes planes. This list is closed under the processes of dualisation and derivation.
The Wyoming planes w1 and w2 are related to each other by derivation, but not to any other planes. They are produced by lifting a homology semibiplane obtained from a2, and a Baer semibiplane obtained from a2a, respectively. Our list is also closed under the process of producing and lifting semibiplanes. Another pair of planes related by the sharing of a homology semibiplane is: s2 and the dual of h1a. Further pairs of planes related by the sharing of Baer semibiplanes are: s1 and h1 (the Desarguesian and ordinary Hughes planes); and s2a and h1b. For more information on semibiplanes and their use in constructing new planes from old, see e.g. my preprint Planes, semibiplanes and related complexes.
In April-May, 2010 I exhaustively enumerated all subplanes of the planes listed here. Notes: