Nets and Latin Squares of Order 7


Here is an exhaustive list of nets and latin squares of order 7. I also have a list of nets of other small orders.

In addition to my own C++ programs, I have made use of Brendan McKay's graph isomorphism package nauty.

If you are aware of errors or omissions in my list, I would appreciate an email message () from you.


Each isomorphism class of k-net of order 7 is represented by a line in this table, which includes

k; name |Aut. gp.| |Class-preserving Aut. gp.| 7-rank dimV0 (k−1)-subnets (k+1)-net extensions
10 50408 50408 7 --- --- 20
20 50803200 25401600 13 0 10(2) 3i, i=0,1,...,146
30 72 12 19 0 20(3) ---
31 4 2 19 0 20(3) ---
32 4 2 19 0 20(3) ---
33 1 1 19 0 20(3) ---
34 16 8 19 0 20(3) ---
35 24 4 19 0 20(3) ---
36 24 4 19 0 20(3) ---
37 16 8 19 0 20(3) ---
38 4 2 19 0 20(3) ---
39 2 1 19 0 20(3) ---
310 4 2 19 0 20(3) ---
311 1008 168 19 0 20(3) 43
312 2 1 19 0 20(3) ---
313 2 1 19 0 20(3) ---
314 2 1 19 0 20(3) ---
315 1 1 19 0 20(3) ---
316 1 1 19 0 20(3) ---
317 2 1 19 0 20(3) ---
318 6 1 19 0 20(3) ---
319 6 1 19 0 20(3) ---
320 2 1 19 0 20(3) ---
321 18 3 19 0 20(3) ---
322 1 1 19 0 20(3) ---
323 1 1 19 0 20(3) ---
324 3 1 19 0 20(3) ---
325 2 1 19 0 20(3) ---
326 2 1 19 0 20(3) ---
327 1 1 19 0 20(3) ---
328 2 2 19 0 20(3) ---
329 1 1 19 0 20(3) ---
330 2 1 19 0 20(3) ---
331 1 1 19 0 20(3) ---
332 4 2 19 0 20(3) ---
333 1 1 19 0 20(3) ---
334 2 1 19 0 20(3) ---
335 2 1 19 0 20(3) ---
336 1 1 19 0 20(3) ---
337 1 1 19 0 20(3) ---
338 2 1 19 0 20(3) ---
339 1 1 19 0 20(3) ---
340 1 1 19 0 20(3) ---
341 2 1 19 0 20(3) ---
342 1 1 19 0 20(3) ---
343 1 1 19 0 20(3) ---
344 1 1 19 0 20(3) ---
345 4 2 19 0 20(3) ---
346 2 1 19 0 20(3) ---
347 8 4 19 0 20(3) ---
348 24 4 19 0 20(3) ---
349 6 1 19 0 20(3) ---
350 1 1 19 0 20(3) ---
351 2 1 19 0 20(3) ---
352 2 2 19 0 20(3) ---
353 1 1 19 0 20(3) ---
354 2 1 19 0 20(3) ---
355 2 1 19 0 20(3) ---
356 2 1 19 0 20(3) ---
357 1 1 19 0 20(3) ---
358 1 1 19 0 20(3) ---
359 2 2 19 0 20(3) ---
360 2 1 19 0 20(3) ---
361 2 1 19 0 20(3) ---
362 1 1 19 0 20(3) ---
363 1 1 19 0 20(3) ---
364 4 2 19 0 20(3) ---
365 2 1 19 0 20(3) ---
366 2 1 19 0 20(3) ---
367 6 3 19 0 20(3) 40
368 4 2 19 0 20(3) ---
369 6 1 19 0 20(3) ---
370 6 1 19 0 20(3) ---
371 6 1 19 0 20(3) ---
372 144 24 19 0 20(3) ---
373 6 1 19 0 20(3) ---
374 2 1 19 0 20(3) ---
375 2 2 19 0 20(3) ---
376 2 1 19 0 20(3) ---
377 2 1 19 0 20(3) ---
378 1 1 19 0 20(3) ---
379 2 1 19 0 20(3) ---
380 6 1 19 0 20(3) ---
381 2 1 19 0 20(3) ---
382 1 1 19 0 20(3) ---
383 2 2 19 0 20(3) ---
384 1 1 19 0 20(3) ---
385 1 1 19 0 20(3) ---
386 2 2 19 0 20(3) ---
387 1 1 19 0 20(3) ---
388 1 1 19 0 20(3) ---
389 2 1 19 0 20(3) ---
390 1 1 19 0 20(3) ---
391 2 1 19 0 20(3) ---
392 1 1 19 0 20(3) ---
393 2 1 19 0 20(3) ---
394 1 1 19 0 20(3) ---
395 2 2 19 0 20(3) ---
396 1 1 19 0 20(3) ---
397 2 1 19 0 20(3) ---
398 2 1 19 0 20(3) ---
399 6 3 19 0 20(3) ---
3100 1 1 19 0 20(3) ---
3101 2 1 19 0 20(3) ---
3102 2 2 19 0 20(3) 41
3103 2 1 19 0 20(3) ---
3104 1 1 19 0 20(3) ---
3105 2 1 19 0 20(3) ---
3106 2 1 19 0 20(3) ---
3107 2 1 19 0 20(3) ---
3108 6 1 19 0 20(3) ---
3109 6 1 19 0 20(3) ---
3110 1 1 19 0 20(3) ---
3111 1 1 19 0 20(3) ---
3112 6 1 19 0 20(3) ---
3113 4 2 19 0 20(3) ---
3114 1 1 19 0 20(3) ---
3115 1 1 19 0 20(3) ---
3116 1 1 19 0 20(3) ---
3117 1 1 19 0 20(3) ---
3118 2 1 19 0 20(3) ---
3119 2 2 19 0 20(3) ---
3120 2 1 19 0 20(3) ---
3121 2 2 19 0 20(3) ---
3122 2 2 19 0 20(3) ---
3123 4 2 19 0 20(3) ---
3124 2 1 19 0 20(3) ---
3125 1 1 19 0 20(3) ---
3126 1 1 19 0 20(3) ---
3127 4 2 19 0 20(3) ---
3128 2 2 19 0 20(3) ---
3129 1 1 19 0 20(3) ---
3130 2 2 19 0 20(3) ---
3131 1 1 19 0 20(3) ---
3132 3 1 19 0 20(3) ---
3133 2 2 19 0 20(3) ---
3134 12 2 19 0 20(3) 46
3135 3 1 19 0 20(3) ---
3136 6 1 19 0 20(3) ---
3137 2 1 19 0 20(3) ---
3138 10 5 19 0 20(3) ---
3139 2 1 19 0 20(3) ---
3140 6 1 19 0 20(3) ---
3141 2 1 19 0 20(3) ---
3142 6 1 19 0 20(3) ---
3143 3 1 19 0 20(3) ---
3144 6 1 19 0 20(3) ---
3145 12 5 19 0 20(3) 40, 45
3146 1764 294 18 1 20(3) 40, 41, 42, 43, 44
40 6 3 24 1 367(2), 3145(1), 3146(1) ---
41 6 2 24 1 3102(3), 3146(1) ---
42 2352 294 22 3 3146(4) 50
43 126 21 23 2 311(1), 3146(3) ---
44 3528 294 22 3 3146(4) 50
45 48 6 24 1 3145(4) ---
46 24 2 24 1 3134(4) ---
50 1764 294 25 6 42(3), 44(2) 60
60 3528 294 27 10 50(6) 70
70 12348 294 28 15 60(7) 80
80 98784 294 28 21 70(8) ---


/ revised April, 2001