Nets and Latin Squares of Order 11


As part of my list of nets of small orders, I am compiling here a list of nets of order 11. This list is by no means complete. So far I have included all nets formed by orthogonal mates of the cyclic Latin square of order 11, for which the resulting 4-net contains no affine plane of order 2; and all subnets of these.

Update Friday Feb 10, 2006:   I have just determined that the only 4-nets N of order 11 having the 4-tuple (X,X,X,X) in V0(N) (in the notation of my manuscripts Ranks of Nets and Ranks of Nets and Webs) are those listed as 42, 43, 44, 45, 46, 47 and 410 below. This result used weeks of computational time on our department's Beowulf cluster acquired under the National Science Foundation under Grant No. 0421935.

In addition to my own C++ programs, I have made use of Brendan McKay's graph isomorphism package nauty.

If you are aware of errors or omissions in my list, I would appreciate an email message () from you.


Each line of the following table denotes a distinct isomorphism class of k-net of order 11. In each case I have included

k; name |Aut. gp.| |Class-preserving Aut. gp.| 11-rank (k−1)-subnets (k+1)-net extensions
10 3991680012 3991680012 11 --- 20
20 2*399168002 399168002 21 10(2) 3i, i=0,1,2,3,4
30 110 55 31 20(3) 40, 41, 42, 44
31 7260 1210 30 20(3) 40, 41, 43, 44, 45, ..., 410
32 110 55 31 20(3) 40, 41, 42, 43
33 22 22 31 20(3) 46, 48, 49
34 22 22 31 20(3) 47, 48, 49
40 55 55 40 30(2), 31, 32 50, 52, 54, 55
41 55 55 40 30, 31, 32(2) 50, 51, 54, 55
42 110 55 40 30(2), 32(2) 50, 53, 54
43 110 55 39 31(3), 32 51, 52, 53
44 110 55 39 30, 31(3) 51, 52, 53
45 4840 1210 38 31(4) 51, 52, 55, 56, 57, ..., 510
46 22 22 39 31, 33(3) 58, 59
47 22 22 39 31(3), 34 58, 59
48 22 22 40 31, 33, 34(2) 58
49 22 22 40 31, 33(2), 34 59
410 9680 1210 38 31(4) 510
50 110 55 49 40(2), 41(2), 42 60
51 55 55 47 41, 43(2), 44, 45 60, 61, 62
52 55 55 47 40, 43, 44(2), 45 60, 61, 62
53 110 55 47 42, 43(2), 44(2) 60, 61, 63
54 110 55 49 40(2), 41(2), 42 61
55 110 55 48 40(2), 41(2), 45 62
56 12100 1210 45 45(5) 62, 64, 65
57 550 55 49 42(5) 63
58 22 22 47 45, 46, 47(2), 48 ---
59 22 22 47 45, 46(2), 47, 49 ---
510 2420 1210 45 45(3), 410(2) 64, 65, 66, 67
60 110 55 55 50, 51(2), 52(2), 53 ---
61 110 55 55 51(2), 52(2), 53, 54 ---
62 110 55 54 51(2), 52(2), 55, 56 ---
63 550 55 55 53(5), 57 ---
64 4840 1210 51 56(2), 510(4) 70, 71
65 6050 1210 51 56, 510(5) 70, 71
66 14520 1210 51 510(6) 71
67 7260 1210 51 510(6) 71
70 12100 1210 56 64(5), 65(2) 80
71 2420 1210 56 64(2), 65(2), 66, 67(2) 80, 81
80 4840 1210 60 70(2), 71(6) 90
81 9680 1210 60 71(8) 90
90 7260 1210 63 80(6), 81(3) 100
100 24200 1210 65 90(10) 110
110 133100 1210 66 100(11) 120
120 1597200 1210 66 110(12) ---


/ revised February, 2006