0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
1 | 2 | 0 | 4 | 6 | 12 | 3 | 11 | 9 | 10 | 8 | 16 | 17 | 14 | 15 | 13 | 7 | 5 | 19 | 20 | 18 | 22 | 23 | 21 | 25 | 26 | 24 |
2 | 0 | 1 | 6 | 3 | 17 | 4 | 16 | 10 | 8 | 9 | 7 | 5 | 15 | 13 | 14 | 11 | 12 | 20 | 18 | 19 | 23 | 21 | 22 | 26 | 24 | 25 |
3 | 5 | 7 | 8 | 19 | 9 | 15 | 10 | 0 | 1 | 2 | 18 | 20 | 25 | 26 | 24 | 14 | 13 | 21 | 22 | 23 | 11 | 4 | 12 | 6 | 17 | 16 |
4 | 12 | 11 | 9 | 20 | 10 | 13 | 8 | 1 | 2 | 0 | 19 | 18 | 26 | 24 | 25 | 15 | 14 | 22 | 23 | 21 | 16 | 6 | 17 | 3 | 5 | 7 |
5 | 7 | 3 | 14 | 10 | 15 | 18 | 13 | 26 | 24 | 25 | 9 | 8 | 22 | 23 | 21 | 20 | 19 | 1 | 2 | 0 | 4 | 12 | 11 | 17 | 16 | 6 |
6 | 17 | 16 | 10 | 18 | 8 | 14 | 9 | 2 | 0 | 1 | 20 | 19 | 24 | 25 | 26 | 13 | 15 | 23 | 21 | 22 | 7 | 3 | 5 | 4 | 12 | 11 |
7 | 3 | 5 | 20 | 13 | 18 | 9 | 19 | 23 | 21 | 22 | 15 | 14 | 2 | 0 | 1 | 8 | 10 | 24 | 25 | 26 | 12 | 11 | 4 | 16 | 6 | 17 |
8 | 14 | 20 | 0 | 1 | 26 | 2 | 23 | 3 | 16 | 12 | 21 | 24 | 17 | 4 | 7 | 22 | 25 | 11 | 5 | 6 | 18 | 9 | 15 | 10 | 13 | 19 |
9 | 15 | 18 | 1 | 2 | 24 | 0 | 21 | 4 | 7 | 17 | 22 | 25 | 5 | 6 | 11 | 23 | 26 | 16 | 12 | 3 | 19 | 10 | 13 | 8 | 14 | 20 |
10 | 13 | 19 | 2 | 0 | 25 | 1 | 22 | 6 | 11 | 5 | 23 | 26 | 12 | 3 | 16 | 21 | 24 | 7 | 17 | 4 | 20 | 8 | 14 | 9 | 15 | 18 |
11 | 4 | 12 | 18 | 14 | 19 | 10 | 20 | 21 | 22 | 23 | 13 | 15 | 0 | 1 | 2 | 9 | 8 | 25 | 26 | 24 | 17 | 16 | 6 | 7 | 3 | 5 |
12 | 11 | 4 | 15 | 8 | 13 | 19 | 14 | 24 | 25 | 26 | 10 | 9 | 23 | 21 | 22 | 18 | 20 | 2 | 0 | 1 | 6 | 17 | 16 | 5 | 7 | 3 |
13 | 19 | 10 | 25 | 26 | 22 | 24 | 2 | 17 | 4 | 7 | 0 | 23 | 11 | 5 | 6 | 1 | 21 | 3 | 16 | 12 | 8 | 14 | 20 | 15 | 18 | 9 |
14 | 20 | 8 | 26 | 24 | 23 | 25 | 0 | 5 | 6 | 11 | 1 | 21 | 16 | 12 | 3 | 2 | 22 | 4 | 7 | 17 | 9 | 15 | 18 | 13 | 19 | 10 |
15 | 18 | 9 | 24 | 25 | 21 | 26 | 1 | 12 | 3 | 16 | 2 | 22 | 7 | 17 | 4 | 0 | 23 | 6 | 11 | 5 | 10 | 13 | 19 | 14 | 20 | 8 |
16 | 6 | 17 | 19 | 15 | 20 | 8 | 18 | 22 | 23 | 21 | 14 | 13 | 1 | 2 | 0 | 10 | 9 | 26 | 24 | 25 | 5 | 7 | 3 | 11 | 4 | 12 |
17 | 16 | 6 | 13 | 9 | 14 | 20 | 15 | 25 | 26 | 24 | 8 | 10 | 21 | 22 | 23 | 19 | 18 | 0 | 1 | 2 | 3 | 5 | 7 | 12 | 11 | 4 |
18 | 9 | 15 | 21 | 22 | 1 | 23 | 24 | 11 | 5 | 6 | 25 | 2 | 3 | 16 | 12 | 26 | 0 | 17 | 4 | 7 | 13 | 19 | 10 | 20 | 8 | 14 |
19 | 10 | 13 | 22 | 23 | 2 | 21 | 25 | 16 | 12 | 3 | 26 | 0 | 4 | 7 | 17 | 24 | 1 | 5 | 6 | 11 | 14 | 20 | 8 | 18 | 9 | 15 |
20 | 8 | 14 | 23 | 21 | 0 | 22 | 26 | 7 | 17 | 4 | 24 | 1 | 6 | 11 | 5 | 25 | 2 | 12 | 3 | 16 | 15 | 18 | 9 | 19 | 10 | 13 |
21 | 22 | 23 | 11 | 16 | 4 | 7 | 12 | 18 | 19 | 20 | 17 | 6 | 8 | 9 | 10 | 5 | 3 | 13 | 14 | 15 | 25 | 26 | 24 | 2 | 0 | 1 |
22 | 23 | 21 | 16 | 7 | 6 | 11 | 17 | 19 | 20 | 18 | 5 | 3 | 9 | 10 | 8 | 12 | 4 | 14 | 15 | 13 | 26 | 24 | 25 | 0 | 1 | 2 |
23 | 21 | 22 | 7 | 11 | 3 | 16 | 5 | 20 | 18 | 19 | 12 | 4 | 10 | 8 | 9 | 17 | 6 | 15 | 13 | 14 | 24 | 25 | 26 | 1 | 2 | 0 |
24 | 25 | 26 | 12 | 17 | 11 | 5 | 4 | 15 | 13 | 14 | 6 | 16 | 20 | 18 | 19 | 3 | 7 | 10 | 8 | 9 | 2 | 0 | 1 | 22 | 23 | 21 |
25 | 26 | 24 | 17 | 5 | 16 | 12 | 6 | 13 | 14 | 15 | 3 | 7 | 18 | 19 | 20 | 4 | 11 | 8 | 9 | 10 | 0 | 1 | 2 | 23 | 21 | 22 |
26 | 24 | 25 | 5 | 12 | 7 | 17 | 3 | 14 | 15 | 13 | 4 | 11 | 19 | 20 | 18 | 6 | 16 | 9 | 10 | 8 | 1 | 2 | 0 | 21 | 22 | 23 |
Centre: 0 21 25
Centrum: 0 21 25
Nucleus: 0 21 25
Left Nucleus: 0 1 2 21 22 23 24 25 26
Middle Nucleus: 0 21 25
Right Nucleus: 0 21 25
1 Element of order 1: 0
14 Elements of order 3: 1 2 3 8 11 13 17 18 21 22 23 24 25 26
12 Elements of order 9: 4 5 6 7 9 10 12 14 15 16 19 20
Commutator Subloop: 0 21 25
Associator Subloop: 0 21 25
3 Conjugacy Classes of size 1:
8 Conjugacy Classes of size 3:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 81 (243, 2187)