0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
1 | 2 | 0 | 4 | 6 | 15 | 3 | 14 | 9 | 10 | 8 | 16 | 13 | 18 | 19 | 20 | 17 | 11 | 12 | 7 | 5 | 25 | 24 | 21 | 26 | 23 | 22 |
2 | 0 | 1 | 6 | 3 | 20 | 4 | 19 | 10 | 8 | 9 | 17 | 18 | 12 | 7 | 5 | 11 | 16 | 13 | 14 | 15 | 23 | 26 | 25 | 22 | 21 | 24 |
3 | 5 | 7 | 8 | 9 | 11 | 10 | 12 | 0 | 21 | 22 | 1 | 2 | 23 | 13 | 16 | 25 | 24 | 26 | 18 | 17 | 4 | 6 | 14 | 20 | 15 | 19 |
4 | 15 | 14 | 9 | 10 | 16 | 8 | 13 | 1 | 25 | 24 | 2 | 0 | 21 | 18 | 17 | 23 | 26 | 22 | 12 | 11 | 6 | 3 | 19 | 5 | 20 | 7 |
5 | 7 | 3 | 11 | 16 | 12 | 17 | 8 | 26 | 2 | 23 | 22 | 24 | 1 | 9 | 13 | 0 | 21 | 25 | 10 | 18 | 15 | 20 | 4 | 19 | 14 | 6 |
6 | 20 | 19 | 10 | 8 | 17 | 9 | 18 | 2 | 23 | 26 | 0 | 1 | 25 | 12 | 11 | 21 | 22 | 24 | 13 | 16 | 3 | 4 | 7 | 15 | 5 | 14 |
7 | 3 | 5 | 12 | 13 | 8 | 18 | 11 | 25 | 24 | 1 | 23 | 21 | 22 | 16 | 9 | 26 | 2 | 0 | 17 | 10 | 14 | 19 | 15 | 6 | 4 | 20 |
8 | 9 | 10 | 0 | 26 | 21 | 25 | 22 | 3 | 19 | 15 | 4 | 6 | 14 | 23 | 2 | 7 | 20 | 5 | 1 | 24 | 18 | 16 | 13 | 17 | 12 | 11 |
9 | 10 | 8 | 1 | 22 | 25 | 23 | 24 | 4 | 7 | 20 | 6 | 3 | 19 | 21 | 0 | 14 | 5 | 15 | 2 | 26 | 12 | 17 | 18 | 11 | 13 | 16 |
10 | 8 | 9 | 2 | 24 | 23 | 21 | 26 | 6 | 14 | 5 | 3 | 4 | 7 | 25 | 1 | 19 | 15 | 20 | 0 | 22 | 13 | 11 | 12 | 16 | 18 | 17 |
11 | 16 | 17 | 26 | 25 | 2 | 0 | 23 | 5 | 6 | 14 | 15 | 20 | 4 | 1 | 24 | 3 | 19 | 7 | 22 | 21 | 10 | 13 | 9 | 18 | 8 | 12 |
12 | 13 | 18 | 25 | 0 | 24 | 26 | 1 | 7 | 20 | 4 | 14 | 19 | 15 | 22 | 21 | 5 | 6 | 3 | 23 | 2 | 17 | 9 | 16 | 10 | 11 | 8 |
13 | 18 | 12 | 23 | 1 | 26 | 22 | 2 | 14 | 5 | 6 | 19 | 7 | 20 | 24 | 25 | 15 | 3 | 4 | 21 | 0 | 11 | 10 | 17 | 8 | 16 | 9 |
14 | 4 | 15 | 13 | 18 | 9 | 12 | 16 | 23 | 26 | 2 | 21 | 25 | 24 | 17 | 10 | 22 | 0 | 1 | 11 | 8 | 19 | 7 | 20 | 3 | 6 | 5 |
15 | 14 | 4 | 16 | 17 | 13 | 11 | 9 | 22 | 0 | 21 | 24 | 26 | 2 | 10 | 18 | 1 | 25 | 23 | 8 | 12 | 20 | 5 | 6 | 7 | 19 | 3 |
16 | 17 | 11 | 22 | 23 | 0 | 1 | 21 | 15 | 3 | 19 | 20 | 5 | 6 | 2 | 26 | 4 | 7 | 14 | 24 | 25 | 8 | 18 | 10 | 12 | 9 | 13 |
17 | 11 | 16 | 24 | 21 | 1 | 2 | 25 | 20 | 4 | 7 | 5 | 15 | 3 | 0 | 22 | 6 | 14 | 19 | 26 | 23 | 9 | 12 | 8 | 13 | 10 | 18 |
18 | 12 | 13 | 21 | 2 | 22 | 24 | 0 | 19 | 15 | 3 | 7 | 14 | 5 | 26 | 23 | 20 | 4 | 6 | 25 | 1 | 16 | 8 | 11 | 9 | 17 | 10 |
19 | 6 | 20 | 18 | 12 | 10 | 13 | 17 | 21 | 22 | 0 | 25 | 23 | 26 | 11 | 8 | 24 | 1 | 2 | 16 | 9 | 7 | 14 | 5 | 4 | 3 | 15 |
20 | 19 | 6 | 17 | 11 | 18 | 16 | 10 | 24 | 1 | 25 | 26 | 22 | 0 | 8 | 12 | 2 | 23 | 21 | 9 | 13 | 5 | 15 | 3 | 14 | 7 | 4 |
21 | 25 | 23 | 19 | 7 | 6 | 14 | 20 | 18 | 12 | 13 | 10 | 17 | 11 | 5 | 3 | 8 | 9 | 16 | 15 | 4 | 22 | 0 | 26 | 1 | 24 | 2 |
22 | 24 | 26 | 15 | 20 | 14 | 5 | 4 | 16 | 17 | 11 | 13 | 9 | 10 | 6 | 19 | 18 | 12 | 8 | 3 | 7 | 0 | 21 | 2 | 25 | 1 | 23 |
23 | 21 | 25 | 14 | 19 | 4 | 7 | 15 | 13 | 18 | 12 | 9 | 16 | 17 | 20 | 6 | 10 | 8 | 11 | 5 | 3 | 26 | 2 | 24 | 0 | 22 | 1 |
24 | 26 | 22 | 20 | 5 | 19 | 15 | 6 | 17 | 11 | 16 | 18 | 10 | 8 | 3 | 7 | 12 | 13 | 9 | 4 | 14 | 1 | 25 | 0 | 23 | 2 | 21 |
25 | 23 | 21 | 7 | 14 | 3 | 19 | 5 | 12 | 13 | 18 | 8 | 11 | 16 | 15 | 4 | 9 | 10 | 17 | 20 | 6 | 24 | 1 | 22 | 2 | 26 | 0 |
26 | 22 | 24 | 5 | 15 | 7 | 20 | 3 | 11 | 16 | 17 | 12 | 8 | 9 | 4 | 14 | 13 | 18 | 10 | 6 | 19 | 2 | 23 | 1 | 21 | 0 | 25 |
Centre: 0 23 24
Centrum: 0 23 24
Nucleus: 0 23 24
Left Nucleus: 0 1 2 21 22 23 24 25 26
Middle Nucleus: 0 23 24
Right Nucleus: 0 23 24
1 Element of order 1: 0
14 Elements of order 3: 1 2 3 8 13 14 17 20 21 22 23 24 25 26
12 Elements of order 9: 4 5 6 7 9 10 11 12 15 16 18 19
Commutator Subloop: 0 23 24
Associator Subloop: 0 23 24
3 Conjugacy Classes of size 1:
8 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(4-1) neq (1*4)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 81 (243, 2187)