Right Bol Loop 16.9.8.3 of order 16


0123456789101112131415
1111312091014152346578
2101213901115141435687
3914151011013124128756
4015141110912133217865
5150913121410116782134
6149012131511105871243
7121011141513098564312
8131110151412907653421
9214365870111013121514
1034127856110915141312
1143218765109014151213
1265872143131514091110
1356781234121415901011
1478563412151312111009
1587654321141213101190

Centre:   0

Centrum:   0   9   10   11   12   13   14   15

Nucleus:   0

Left Nucleus:   0   9   10   11   12   13   14   15

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

9 Elements of order 2:   7   8   9   10   11   12   13   14   15

6 Elements of order 4:   1   2   3   4   5   6

Commutator Subloop:   0   9   10   11   12   13   14   15

Associator Subloop:   0   9   10   11   12   13   14   15

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 7:

1 Conjugacy Class of size 8:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,8,5,3,7,6)(9,15,13,10,14,12) is not an automorphism.   L1,1(1*2) neq L1,1(1)*L1,1(2)

Ar Property:   FAILS. The right inner mapping R1,2 = (1,7)(2,8)(3,5)(4,6) is not an automorphism.   R1,2(1*1) neq R1,2(1)*R1,2(1)

Right (Left, Full) Mult Group Orders:   128 (1625702400, 3251404800)


/ revised November, 2001