0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 12 | 13 | 11 | 9 | 10 | 14 | 15 | 2 | 3 | 4 | 5 | 6 | 8 | 7 |
2 | 9 | 15 | 14 | 10 | 0 | 11 | 13 | 12 | 1 | 4 | 3 | 7 | 8 | 6 | 5 |
3 | 10 | 14 | 15 | 9 | 11 | 0 | 12 | 13 | 4 | 1 | 2 | 8 | 7 | 5 | 6 |
4 | 11 | 13 | 12 | 0 | 10 | 9 | 15 | 14 | 3 | 2 | 1 | 6 | 5 | 7 | 8 |
5 | 12 | 0 | 11 | 13 | 15 | 14 | 10 | 9 | 7 | 8 | 6 | 1 | 4 | 3 | 2 |
6 | 13 | 11 | 0 | 12 | 14 | 15 | 9 | 10 | 8 | 7 | 5 | 4 | 1 | 2 | 3 |
7 | 15 | 9 | 10 | 14 | 12 | 13 | 11 | 0 | 5 | 6 | 8 | 2 | 3 | 4 | 1 |
8 | 14 | 10 | 9 | 15 | 13 | 12 | 0 | 11 | 6 | 5 | 7 | 3 | 2 | 1 | 4 |
9 | 2 | 1 | 4 | 3 | 7 | 8 | 5 | 6 | 0 | 11 | 10 | 15 | 14 | 13 | 12 |
10 | 3 | 4 | 1 | 2 | 8 | 7 | 6 | 5 | 11 | 0 | 9 | 14 | 15 | 12 | 13 |
11 | 4 | 3 | 2 | 1 | 6 | 5 | 8 | 7 | 10 | 9 | 0 | 13 | 12 | 15 | 14 |
12 | 5 | 7 | 8 | 6 | 1 | 4 | 2 | 3 | 15 | 14 | 13 | 0 | 11 | 10 | 9 |
13 | 6 | 8 | 7 | 5 | 4 | 1 | 3 | 2 | 14 | 15 | 12 | 11 | 0 | 9 | 10 |
14 | 8 | 6 | 5 | 7 | 3 | 2 | 4 | 1 | 13 | 12 | 15 | 10 | 9 | 0 | 11 |
15 | 7 | 5 | 6 | 8 | 2 | 3 | 1 | 4 | 12 | 13 | 14 | 9 | 10 | 11 | 0 |
Centre: 0 11
Centrum: 0 9 10 11 12 13 14 15
Nucleus: 0 11
Left Nucleus: 0 9 10 11 12 13 14 15
Middle Nucleus: 0 11
Right Nucleus: 0 11
1 Element of order 1: 0
9 Elements of order 2: 1 4 9 10 11 12 13 14 15
6 Elements of order 4: 2 3 5 6 7 8
Commutator Subloop: 0 11 14 15
Associator Subloop: 0 11 14 15
2 Conjugacy Classes of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,1 = (2,5)(3,6)(7,8)(9,12)(10,13)(14,15) is not an automorphism. L1,1(2*2) neq L1,1(2)*L1,1(2)
Ar Property: FAILS. The right inner mapping R1,2 = (1,7)(2,5)(3,6)(4,8) is not an automorphism. R1,2(1*1) neq R1,2(1)*R1,2(1)
Right (Left, Full) Mult Group Orders: 64 (1024, 4096)