Right Bol Loop 16.9.4.51 of order 16


0123456789101112131415
1014101115129132564873
2913111012150141653784
3101213140911154872561
4111514139010123781652
5151109131412106127348
6121090141315115218437
7140121511101398435216
8139151210111407346125
9214365870111015141312
1034871265110914151213
1143782156109013121514
1265217834151413011109
1387563421141512110910
1478654312131215109011
1556128743121314910110

Centre:   0   13

Centrum:   0   9   13   14

Nucleus:   0   13

Left Nucleus:   0   9   13   14

Middle Nucleus:   0   13

Right Nucleus:   0   13


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   8   9   10   11   12   13   14   15

6 Elements of order 4:   2   3   4   5   6   7

Commutator Subloop:   0   13

Associator Subloop:   0   13

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,7)(3,5)(4,6)(9,14)(10,15)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001