Right Bol Loop 16.9.4.5 of order 16


0123456789101112131415
1014151291110135364827
2913121501011148473516
3101213141190156152748
4111514131009127281635
5140111013151291637284
6121090151314113518472
7151109121413104825361
8139101114121502746153
9214387650111015141312
1034126587110914151213
1143217856109013121514
1267583124151413011109
1385762431141512110910
1458671342131215109011
1576854213121314910110

Centre:   0   13

Centrum:   0   10   13   15

Nucleus:   0   13

Left Nucleus:   0   9   10   11   12   13   14   15

Middle Nucleus:   0   13

Right Nucleus:   0   13


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   8   9   10   11   12   13   14   15

6 Elements of order 4:   2   3   4   5   6   7

Commutator Subloop:   0   13

Associator Subloop:   0   13

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (3,7)(10,15) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (1024, 2048)


/ revised October, 2001