Right Bol Loop 16.9.4.3 of order 16


0123456789101112131415
1014111015129132563874
2913101112150141654783
3101514139011124871562
4111213140910153782651
5121190141315106128347
6151009131412115217438
7140121510111398436215
8139151211101407345126
9214365870111015141312
1034871265110913121514
1143782156109014151213
1256128743151314010119
1387563421141215100911
1478654312131512119010
1565217834121413911100

Centre:   0   13

Centrum:   0   9   13   14

Nucleus:   0   13

Left Nucleus:   0   9   13   14

Middle Nucleus:   0   13

Right Nucleus:   0   13


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   8   9   10   11   12   13   14   15

6 Elements of order 4:   2   3   4   5   6   7

Commutator Subloop:   0   9   13   14

Associator Subloop:   0   9   13   14

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,7)(3,6)(4,5)(9,14)(10,15)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   FAILS. The right inner mapping R1,3 = (1,7)(2,8)(3,4)(5,6)(10,12)(11,15) is not an automorphism.   R1,3(1*1) neq R1,3(1)*R1,3(1)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001