Right Bol Loop 16.9.2.60 of order 16


0123456789101112131415
1091110121514132435867
2901011131415121348576
3101190141312154126785
4111009151213143217658
5121315140111098671243
6141513121090117853412
7151412131109106584321
8131214159101105762134
9214387650111013121514
1034126587119014151312
1143217856100915141213
1258671342131514091110
1385762431121415901011
1467583124151213101109
1576854213141312111090

Centre:   0   9

Centrum:   0   9

Nucleus:   0   9

Left Nucleus:   0   9   14   15

Middle Nucleus:   0   9

Right Nucleus:   0   9


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   2   5   8   9   12   13   14   15

6 Elements of order 4:   3   4   6   7   10   11

Commutator Subloop:   0   9

Associator Subloop:   0   9

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,7)(14,15) is not an automorphism.   L1,1(3*5) neq L1,1(3)*L1,1(5)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001