Right Bol Loop 16.9.2.5 of order 16


0123456789101112131415
1035247691381514111012
2401673511151314812910
3517062413119121015814
4260715314101291181513
5376104210814131591211
6742530112141581310119
7654321015121110914138
8101214139111575162340
9141511108131260347251
1081491213151124073165
1115131291481053704612
1213810111514917430526
1312118151091441256703
1491015811121336521074
1511913141210802615437

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   7   13   14

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   2   5   6   7   9   10   11   12

6 Elements of order 4:   3   4   8   13   14   15

Commutator Subloop:   0   3   4   7

Associator Subloop:   0   3   4   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,5)(3,4)(8,13,15,14)(9,11,12,10) is not an automorphism.   L1,1(2*8) neq L1,1(2)*L1,1(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001