Right Bol Loop 16.9.2.372 of order 16


0123456789101112131415
1091110131514122435876
2901011121415131348567
3101190141213154126758
4111009151312143217685
5121315140111098671243
6141513121109107853412
7151412131090116584321
8131214159101105762134
9214387650111013121514
1034127856119014151312
1143216587100915141213
1258672341131514091011
1385761432121415901110
1467583214151213101190
1576854123141312111009

Centre:   0   9

Centrum:   0   9

Nucleus:   0   9

Left Nucleus:   0   9

Middle Nucleus:   0   9

Right Nucleus:   0   9


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   2   5   6   7   8   9   12   13

6 Elements of order 4:   3   4   10   11   14   15

Commutator Subloop:   0   9

Associator Subloop:   0   9

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (5,8)(12,13) is not an automorphism.   L1,1(3*5) neq L1,1(3)*L1,1(5)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001