Right Bol Loop 16.9.2.321 of order 16


0123456789101112131415
1032547698151413121110
2406173511141381510912
3517062413121110981514
4260715314111291015813
5371604212131415891011
6745230110158131411129
7654321015109121114138
8101213141191571652340
9151411121381060734521
1081312111415917043256
1113151098141254370612
1214891015131123407165
1311101589121445216073
1412981510111332561704
1591114131210806125437

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   2   5   7   9   10   13   14

Middle Nucleus:   0   1   6   7

Right Nucleus:   0   1   6   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   2   5   6   7   9   10   13   14

6 Elements of order 4:   3   4   8   11   12   15

Commutator Subloop:   0   7

Associator Subloop:   0   7

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (64, 256)


/ revised October, 2001