Right Bol Loop 16.9.2.210 of order 16


0123456789101112131415
1129101115141305648732
2151211140131098735641
3141109131215107826514
4131491210150116517823
5901310121114151462378
6101312151109144153287
7111015014912133284156
8015141391011122371465
9284617350111015141312
1034127856110914151213
1146283517109013121514
1285672341151413011109
1373516284141512110910
1467854123131215109011
1551738462121314910110

Centre:   0   12

Centrum:   0   12

Nucleus:   0   12

Left Nucleus:   0   10   12   14

Middle Nucleus:   0   12

Right Nucleus:   0   12


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   3   6   9   10   11   12   13   14   15

6 Elements of order 4:   1   2   4   5   7   8

Commutator Subloop:   0   12

Associator Subloop:   0   12

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,7)(11,13) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001