Right Bol Loop 16.9.2.2 of order 16


0123456789101112131415
1032547691513148111012
2406173511141581312910
3517062413119121015814
4260715314101291181513
5371604210138151491211
6745230112814131510119
7654321015121110914138
8101213149111501256437
9141511108131217430526
1081491213151153704612
1115131291481024073165
1213810111514960347251
1312111581091432615074
1491081511121345162703
1511914131210876521340

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   2   5   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   2   5   6   7   8   13   14   15

6 Elements of order 4:   3   4   9   10   11   12

Commutator Subloop:   0   3   4   7

Associator Subloop:   0   3   4   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,4)(8,14,15,13)(9,10,12,11) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001