Right Bol Loop 16.9.2.122 of order 16


0123456789101112131415
1091011121415136345827
2915111013014127483516
3101115149121304162758
4111314150101293217685
5121090151311148671234
6140121310159111538472
7151413121190102854361
8131209141110155726143
9274381650111310121514
1034762581120149151113
1148671352139015141012
1253217846101415091311
1385126437111591401210
1461583724151210131109
1576854213141312111090

Centre:   0   15

Centrum:   0   15

Nucleus:   0   15

Left Nucleus:   0   15

Middle Nucleus:   0   15

Right Nucleus:   0   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

9 Elements of order 2:   1   7   9   10   11   12   13   14   15

6 Elements of order 4:   2   3   4   5   6   8

Commutator Subloop:   0   15

Associator Subloop:   0   15

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,6)(9,14) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001