0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 11 | 6 | 5 | 8 | 7 | 12 | 13 | 4 | 9 | 10 | 15 | 14 |
2 | 3 | 4 | 10 | 6 | 9 | 0 | 1 | 12 | 14 | 7 | 5 | 15 | 8 | 11 | 13 |
3 | 2 | 11 | 13 | 5 | 12 | 1 | 0 | 9 | 15 | 8 | 6 | 14 | 7 | 4 | 10 |
4 | 11 | 6 | 5 | 0 | 3 | 2 | 15 | 14 | 13 | 12 | 1 | 10 | 9 | 8 | 7 |
5 | 6 | 1 | 9 | 3 | 10 | 11 | 4 | 13 | 7 | 14 | 2 | 8 | 15 | 0 | 12 |
6 | 5 | 0 | 12 | 2 | 13 | 4 | 11 | 10 | 8 | 15 | 3 | 7 | 14 | 1 | 9 |
7 | 8 | 12 | 0 | 15 | 11 | 10 | 13 | 4 | 5 | 2 | 14 | 6 | 3 | 9 | 1 |
8 | 7 | 9 | 1 | 14 | 4 | 13 | 10 | 11 | 6 | 3 | 15 | 5 | 2 | 12 | 0 |
9 | 12 | 14 | 15 | 13 | 7 | 8 | 5 | 6 | 0 | 11 | 10 | 1 | 4 | 2 | 3 |
10 | 13 | 7 | 8 | 12 | 14 | 15 | 2 | 3 | 11 | 0 | 9 | 4 | 1 | 5 | 6 |
11 | 4 | 5 | 6 | 1 | 2 | 3 | 14 | 15 | 10 | 9 | 0 | 13 | 12 | 7 | 8 |
12 | 9 | 15 | 14 | 10 | 8 | 7 | 6 | 5 | 1 | 4 | 13 | 0 | 11 | 3 | 2 |
13 | 10 | 8 | 7 | 9 | 15 | 14 | 3 | 2 | 4 | 1 | 12 | 11 | 0 | 6 | 5 |
14 | 15 | 13 | 11 | 8 | 0 | 9 | 12 | 1 | 2 | 5 | 7 | 3 | 6 | 10 | 4 |
15 | 14 | 10 | 4 | 7 | 1 | 12 | 9 | 0 | 3 | 6 | 8 | 2 | 5 | 13 | 11 |
Centre: 0
Centrum: 0 1 4 9 10 11 12 13
Nucleus: 0
Left Nucleus: 0 1 4 9 10 11 12 13
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
7 Elements of order 2: 1 4 9 10 11 12 13
8 Elements of order 4: 2 3 5 6 7 8 14 15
Commutator Subloop: 0 1 9 12
Associator Subloop: 0 1 9 12
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,2 = (2,15)(3,14)(5,7)(6,8) is not an automorphism. L1,2(2*2) neq L1,2(2)*L1,2(2)
Ar Property: FAILS. The right inner mapping R1,2 = (2,14)(3,15)(5,7)(6,8) is not an automorphism. R1,2(2*2) neq R1,2(2)*R1,2(2)
Right (Left, Full) Mult Group Orders: 64 (9216, 9216)