Right Bol Loop 16.7.4.73 of order 16


0123456789101112131415
1230574691181013151214
2301765411109815141312
3012647510811914121513
4576231012141315119108
5764302114151213981110
6457120313121514101189
7645013215131412810911
8101191213141523107654
9810111412151330215746
1011981315121412036475
1198101514131201324567
1213151411910876540132
1315141298111057461203
1412131510118964753021
1514121381091145672310

Centre:   0   2

Centrum:   0   2   4   7

Nucleus:   0   2

Left Nucleus:   0   2   4   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   5   6   9   10   12   15

8 Elements of order 4:   1   3   4   7   8   11   13   14

Commutator Subloop:   0   2

Associator Subloop:   0   2

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (8,11)(9,10) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001