Right Bol Loop 16.7.4.69 of order 16


0123456789101112131415
1036725498121311101514
2341670510138159141211
3274501612119141581013
4765032115141110131298
5610347213101498151112
6507214311121581491310
7452163014151312101189
8911121513101447265310
9813111410121574352601
1012891114151363047152
1113151410981225401736
1210915138141152170463
1311148121591036714025
1415121091113810536247
1514101381211901623574

Centre:   0   4

Centrum:   0   4   9   14

Nucleus:   0   4

Left Nucleus:   0   4   9   14

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   4   7   10   11   12   13

8 Elements of order 4:   2   3   5   6   8   9   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001