Right Bol Loop 16.7.4.63 of order 16


0123456789101112131415
1230547698111013151214
2301765411109815141312
3012674510118914121513
4576231012131415111098
5764320113121514108119
6457102314151213911810
7645013215141312891011
8101191213141521307564
9810111312151430216745
1011981415121312035476
1198101514131203124657
1214151311109875640312
1312141510118964751023
1415131298111057463201
1513121489101146572130

Centre:   0   2

Centrum:   0   2   4   7

Nucleus:   0   2

Left Nucleus:   0   2   4   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   9   10   12   13   14   15

8 Elements of order 4:   1   3   4   5   6   7   8   11

Commutator Subloop:   0   2

Associator Subloop:   0   2

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,7)(5,6) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001