0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 15 | 9 | 11 | 4 | 2 | 6 | 8 | 13 | 5 | 14 | 10 | 12 | 7 |
2 | 4 | 5 | 14 | 10 | 6 | 0 | 11 | 1 | 13 | 8 | 3 | 9 | 15 | 7 | 12 |
3 | 6 | 11 | 5 | 0 | 4 | 1 | 12 | 13 | 10 | 9 | 2 | 8 | 7 | 15 | 14 |
4 | 2 | 1 | 0 | 5 | 3 | 11 | 13 | 12 | 14 | 15 | 6 | 7 | 8 | 9 | 10 |
5 | 11 | 6 | 4 | 3 | 0 | 2 | 8 | 7 | 15 | 14 | 1 | 13 | 12 | 10 | 9 |
6 | 3 | 0 | 10 | 14 | 2 | 5 | 1 | 11 | 12 | 7 | 4 | 15 | 9 | 8 | 13 |
7 | 9 | 14 | 12 | 13 | 8 | 10 | 5 | 0 | 1 | 6 | 15 | 4 | 3 | 2 | 11 |
8 | 15 | 10 | 13 | 12 | 7 | 14 | 0 | 5 | 11 | 2 | 9 | 3 | 4 | 6 | 1 |
9 | 7 | 13 | 1 | 11 | 15 | 12 | 10 | 14 | 5 | 3 | 8 | 2 | 6 | 4 | 0 |
10 | 13 | 7 | 2 | 6 | 14 | 8 | 15 | 9 | 4 | 0 | 12 | 11 | 1 | 5 | 3 |
11 | 5 | 4 | 9 | 15 | 1 | 3 | 6 | 2 | 7 | 12 | 0 | 10 | 14 | 13 | 8 |
12 | 14 | 9 | 8 | 7 | 13 | 15 | 4 | 3 | 2 | 11 | 10 | 0 | 5 | 1 | 6 |
13 | 10 | 15 | 7 | 8 | 12 | 9 | 3 | 4 | 6 | 1 | 14 | 5 | 0 | 11 | 2 |
14 | 12 | 8 | 6 | 2 | 10 | 7 | 9 | 15 | 3 | 5 | 13 | 1 | 11 | 0 | 4 |
15 | 8 | 12 | 11 | 1 | 9 | 13 | 14 | 10 | 0 | 4 | 7 | 6 | 2 | 3 | 5 |
Centre: 0 5 12 13
Centrum: 0 5 12 13
Nucleus: 0 5 12 13
Left Nucleus: 0 5 12 13
Middle Nucleus: 0 5 12 13
Right Nucleus: 0 5 12 13
1 Element of order 1: 0
7 Elements of order 2: 1 5 10 11 12 13 14
8 Elements of order 4: 2 3 4 6 7 8 9 15
Commutator Subloop: 0 5 12 13
Associator Subloop: 0 5 12 13
4 Conjugacy Classes of size 1:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 32 (256, 1024)