Right Bol Loop 16.7.4.3 of order 16


0123456789101112131415
1032674598111015141312
2301547610118913121514
3210765411109814151213
4657021315121413911108
5746203114131512119810
6475130212151314810119
7564312013141215108911
8121013151411947563120
9151114121310865742031
1013812141591156471302
1114915131281074650213
1281310911141512305476
1310128119151430124567
1411159108121321036745
1591411810131203217654

Centre:   0   2

Centrum:   0   2   4   5

Nucleus:   0   2

Left Nucleus:   0   1   2   3   4   5   6   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   4   5

Associator Subloop:   0   2   4   5

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,5)(6,7)(8,14)(9,13)(10,15)(11,12) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001