Right Bol Loop 16.7.4.28 of order 16


0123456789101112131415
1230574691181013151214
2301765411109815141312
3012647510811914121513
4576013212141315810911
5764120314151213101189
6457302113121514981110
7645231015131412119108
8911101214131521304657
9111081415121332016745
1089111312151410235476
1110891513141203127564
1214151389101175640312
1312141510811954761023
1415131291181067453201
1513121411109846572130

Centre:   0   2

Centrum:   0   2   4   7

Nucleus:   0   2

Left Nucleus:   0   2   4   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   4   7   12   13   14   15

8 Elements of order 4:   1   3   5   6   8   9   10   11

Commutator Subloop:   0   2

Associator Subloop:   0   2

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (8,11)(9,10) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001