Right Bol Loop 16.7.4.2 of order 16


0123456789101112131415
1032547698111013121514
2301674510111514891312
3210765411101415981213
4567012313129814151011
5476103212138915141110
6745230114151312111089
7654321015141213101198
8911121013141510453276
9810131112151401542367
1011915814131232106754
1110814915121323017645
1213148159111045671023
1312159148101154760132
1415121113108976235410
1514131012119867324501

Centre:   0   7

Centrum:   0   1   6   7

Nucleus:   0   7

Left Nucleus:   0   1   6   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   1   6   7

Associator Subloop:   0   1   6   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,4) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001