Right Bol Loop 16.7.4.19 of order 16


0123456789101112131415
1032674591511141081213
2301547610118913121514
3210765411149158101312
4657021313812101415119
5746203112101381514911
6475130215131412119108
7564312014121513911810
8111012913151423014567
9101114815131237160245
1098131112141501235476
1189151014121316372054
1215138141011940527631
1314121015891152406713
1413159121110864753120
1512141113981075641302

Centre:   0   7

Centrum:   0   2   6   7

Nucleus:   0   7

Left Nucleus:   0   2   6   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   6   7

Associator Subloop:   0   2   6   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,6)(3,4)(8,10)(9,11)(12,13)(14,15) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   FAILS. The right inner mapping R1,8 = (1,4)(3,5)(8,10)(9,12)(11,13)(14,15) is not an automorphism.   R1,8(8*1) neq R1,8(8)*R1,8(1)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001