0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 6 | 7 | 4 | 5 | 9 | 15 | 11 | 14 | 10 | 8 | 12 | 13 |
2 | 3 | 0 | 1 | 5 | 4 | 7 | 6 | 10 | 11 | 8 | 9 | 13 | 12 | 15 | 14 |
3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 11 | 14 | 9 | 15 | 8 | 10 | 13 | 12 |
4 | 6 | 5 | 7 | 0 | 2 | 1 | 3 | 13 | 8 | 12 | 10 | 14 | 15 | 11 | 9 |
5 | 7 | 4 | 6 | 2 | 0 | 3 | 1 | 12 | 10 | 13 | 8 | 15 | 14 | 9 | 11 |
6 | 4 | 7 | 5 | 1 | 3 | 0 | 2 | 15 | 13 | 14 | 12 | 11 | 9 | 10 | 8 |
7 | 5 | 6 | 4 | 3 | 1 | 2 | 0 | 14 | 12 | 15 | 13 | 9 | 11 | 8 | 10 |
8 | 11 | 10 | 12 | 9 | 13 | 15 | 14 | 2 | 3 | 0 | 1 | 4 | 5 | 6 | 7 |
9 | 10 | 11 | 14 | 8 | 15 | 13 | 12 | 3 | 7 | 1 | 6 | 0 | 2 | 4 | 5 |
10 | 9 | 8 | 13 | 11 | 12 | 14 | 15 | 0 | 1 | 2 | 3 | 5 | 4 | 7 | 6 |
11 | 8 | 9 | 15 | 10 | 14 | 12 | 13 | 1 | 6 | 3 | 7 | 2 | 0 | 5 | 4 |
12 | 15 | 13 | 8 | 14 | 10 | 11 | 9 | 4 | 0 | 5 | 2 | 7 | 6 | 3 | 1 |
13 | 14 | 12 | 10 | 15 | 8 | 9 | 11 | 5 | 2 | 4 | 0 | 6 | 7 | 1 | 3 |
14 | 13 | 15 | 9 | 12 | 11 | 10 | 8 | 6 | 4 | 7 | 5 | 3 | 1 | 2 | 0 |
15 | 12 | 14 | 11 | 13 | 9 | 8 | 10 | 7 | 5 | 6 | 4 | 1 | 3 | 0 | 2 |
Centre: 0 7
Centrum: 0 2 6 7
Nucleus: 0 7
Left Nucleus: 0 2 6 7
Middle Nucleus: 0 7
Right Nucleus: 0 7
1 Element of order 1: 0
7 Elements of order 2: 1 2 3 4 5 6 7
8 Elements of order 4: 8 9 10 11 12 13 14 15
Commutator Subloop: 0 2 6 7
Associator Subloop: 0 2 6 7
2 Conjugacy Classes of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(9-1) neq (1*9)-1
Al Property: FAILS. The left inner mapping L1,8 = (2,6)(3,4)(8,10)(9,11)(12,13)(14,15) is not an automorphism. L1,8(2*8) neq L1,8(2)*L1,8(8)
Ar Property: FAILS. The right inner mapping R1,8 = (1,4)(3,5)(8,10)(9,12)(11,13)(14,15) is not an automorphism. R1,8(8*1) neq R1,8(8)*R1,8(1)
Right (Left, Full) Mult Group Orders: 64 (4096, 16384)