Right Bol Loop 16.7.4.18 of order 16


0123456789101112131415
1230764591415101181312
2301547611109813121514
3012675410151498111213
4756201313811121514910
5647023112118131415109
6475130214131215109811
7564312015121314910118
8101191312141501325467
9810111514131216732045
1011981415121337610254
1198101213151423104576
1215131481110952046731
1314121511891040257613
1412151391081164573102
1513141210911875461320

Centre:   0   2

Centrum:   0   2   6   7

Nucleus:   0   2

Left Nucleus:   0   2   6   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   6   7   8   11   14   15

8 Elements of order 4:   1   3   4   5   9   10   12   13

Commutator Subloop:   0   2   6   7

Associator Subloop:   0   2   6   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,5)(6,7)(8,11)(9,10)(12,13)(14,15) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   FAILS. The right inner mapping R1,8 = (1,5)(3,4)(8,11)(9,13)(10,12)(14,15) is not an automorphism.   R1,8(8*1) neq R1,8(8)*R1,8(1)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001