0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 8 | 12 | 7 | 6 | 4 | 10 | 9 | 15 | 5 | 14 | 13 | 11 |
2 | 4 | 5 | 12 | 11 | 7 | 1 | 0 | 15 | 14 | 13 | 6 | 3 | 10 | 9 | 8 |
3 | 8 | 12 | 5 | 15 | 6 | 0 | 1 | 11 | 13 | 14 | 7 | 2 | 9 | 10 | 4 |
4 | 2 | 11 | 15 | 5 | 9 | 13 | 14 | 12 | 0 | 1 | 10 | 8 | 6 | 7 | 3 |
5 | 12 | 7 | 6 | 9 | 0 | 3 | 2 | 10 | 4 | 8 | 14 | 1 | 15 | 11 | 13 |
6 | 10 | 1 | 0 | 13 | 3 | 5 | 12 | 14 | 15 | 11 | 2 | 7 | 4 | 8 | 9 |
7 | 9 | 0 | 1 | 14 | 2 | 12 | 5 | 13 | 11 | 15 | 3 | 6 | 8 | 4 | 10 |
8 | 3 | 15 | 11 | 12 | 10 | 14 | 13 | 5 | 1 | 0 | 9 | 4 | 7 | 6 | 2 |
9 | 7 | 14 | 13 | 0 | 4 | 15 | 11 | 1 | 5 | 12 | 8 | 10 | 3 | 2 | 6 |
10 | 6 | 13 | 14 | 1 | 8 | 11 | 15 | 0 | 12 | 5 | 4 | 9 | 2 | 3 | 7 |
11 | 15 | 9 | 10 | 7 | 14 | 8 | 4 | 6 | 2 | 3 | 0 | 13 | 12 | 5 | 1 |
12 | 5 | 6 | 7 | 10 | 1 | 2 | 3 | 9 | 8 | 4 | 13 | 0 | 11 | 15 | 14 |
13 | 14 | 8 | 4 | 3 | 15 | 9 | 10 | 2 | 6 | 7 | 12 | 11 | 0 | 1 | 5 |
14 | 13 | 4 | 8 | 2 | 11 | 10 | 9 | 3 | 7 | 6 | 5 | 15 | 1 | 0 | 12 |
15 | 11 | 10 | 9 | 6 | 13 | 4 | 8 | 7 | 3 | 2 | 1 | 14 | 5 | 12 | 0 |
Centre: 0
Centrum: 0 5
Nucleus: 0
Left Nucleus: 0 1 5 11 12 13 14 15
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
7 Elements of order 2: 1 5 11 12 13 14 15
8 Elements of order 4: 2 3 4 6 7 8 9 10
Commutator Subloop: 0 5 13 15
Associator Subloop: 0 5 13 15
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: HOLDS
Al Property: FAILS. The left inner mapping L1,2 = (2,8)(3,4)(5,15,13)(6,9)(7,10)(11,12,14) is not an automorphism. L1,2(1*5) neq L1,2(1)*L1,2(5)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 64 (18432, 36864)