Right Bol Loop 16.7.2.432 of order 16


0123456789101112131415
1032765491511121310814
2301547610131598141112
3210674511101415981213
4756023115141213101198
5647201312118141591310
6574310213129814151011
7465132014813101112159
8912131510111441235670
9813121411101574356201
1011151412891356410732
1110141513981262741053
1213891015141123074165
1312981114151035107426
1415111091312810623547
1514101181213907562314

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   4

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (8,15)(9,14) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001