Right Bol Loop 16.7.2.328 of order 16


0123456789101112131415
1230547698111013141512
2301765411109814151213
3012674510118915121314
4675231012151314111089
5467320115121413911108
6754102313141215108911
7546013214131512891110
8911101213151401324675
9111081514121310236754
1089111312141532015467
1110891415131223107546
1213141511910845672301
1314151291181067453012
1415121381091176540123
1512131410811954761230

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   8   9   10   11   13   15

8 Elements of order 4:   1   3   4   5   6   7   12   14

Commutator Subloop:   0   2

Associator Subloop:   0   2

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,7)(5,6) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001