Right Bol Loop 16.7.2.217 of order 16


0123456789101112131415
1032765491514108111312
2301547610141591181213
3210674511109813121514
4756023115121314910118
5647201313118121415910
6574310214131215109811
7465132012811131514109
8121314151011941267530
9151413121110874650321
1014151213891156473012
1113121514981062145703
1281110914131510324657
1311891015121423016475
1410981112151335702146
1591011813141207531264

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   3   4   6

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,6) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001