Right Bol Loop 16.7.2.113 of order 16


0123456789101112131415
1230547698111013151214
2301765411109815141312
3012674510118914121513
4576213012131415119108
5764302114151213981110
6457120313121514101189
7645031215141312810911
8101191214131521304567
9810111412151330216475
1011981315121412035746
1198101513141203127654
1213151411910876542310
1315141291181054763021
1412131510811967451203
1514121381091145670132

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   2   5   6   9   10   13   14

8 Elements of order 4:   1   3   4   7   8   11   12   15

Commutator Subloop:   0   2

Associator Subloop:   0   2

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (4-1)(9-1) neq (4*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,7)(5,6) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001