Right Bol Loop 16.7.2.1 of order 16


0123456789101112131415
1032765491011814121513
2301547610118915141312
3210674511891013151214
4756023115131214109118
5647201312141513811910
6574310214151312981011
7465132013121415111089
8912111510141346572310
9814101311121574653021
1011159128131457460132
1110138149151265741203
1214813101591121034765
1315111291410810326457
1412915111381032107546
1513101481211903215674

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   2   4   5

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

7 Elements of order 2:   1   2   3   4   5   6   7

8 Elements of order 4:   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   4   5

Associator Subloop:   0   2   4   5

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,6)(8,10)(9,11)(12,15)(13,14) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001