Right Bol Loop 16.5.4.44 of order 16


0123456789101112131415
1012101113141592438657
2915111014131201347568
3101415120913114786125
4111312159014103875216
5131109151210146124783
6141090121511135213874
7159131410110128652431
8120141311109157561342
9214365870111015141312
1034781256111215149013
1143872165101512130914
1287654321151413011109
1356127834149011121510
1465218743130910151211
1578563412121314910110

Centre:   0   15

Centrum:   0   9   12   15

Nucleus:   0   15

Left Nucleus:   0   9   12   15

Middle Nucleus:   0   15

Right Nucleus:   0   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   7   9   12   15

10 Elements of order 4:   2   3   4   5   6   8   10   11   13   14

Commutator Subloop:   0   9   12   15

Associator Subloop:   0   9   12   15

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,8)(3,4)(5,6)(9,12)(10,11)(13,14) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   FAILS. The right inner mapping R1,3 = (1,2)(7,8)(10,11)(13,14) is not an automorphism.   R1,3(1*1) neq R1,3(1)*R1,3(1)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001