Right Bol Loop 16.5.4.21 of order 16


0123456789101112131415
1036274598131011121514
2457160310138915141112
3670541213109151481211
4215037611121489151013
5764302115141213101198
6301725412111514891310
7542613014151112131089
8910131115121457632410
9813121014111575463201
1011151491281364570132
1110915813141232157064
1213891410151123015746
1312148151191046701523
1415111012913810324657
1514121113810901246375

Centre:   0   5

Centrum:   0   5   8   15

Nucleus:   0   5

Left Nucleus:   0   5   8   15

Middle Nucleus:   0   5

Right Nucleus:   0   5


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   3   4   5   7

10 Elements of order 4:   2   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   5

Associator Subloop:   0   5

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001