Right Bol Loop 16.5.4.14 of order 16


0123456789101112131415
1015111014139122658437
2912101113140151567348
3101315120911144126785
4111412159010133215876
5131009151214116784123
6141190121513105873214
7150141311101298432651
8129131410111507341562
9214365870111015141312
1034872156111215149013
1143781265101512130914
1287654321151413011109
1356218734149011121510
1465127843130910151211
1578563412121314910110

Centre:   0   12

Centrum:   0   9   12   15

Nucleus:   0   12

Left Nucleus:   0   9   10   11   12   13   14   15

Middle Nucleus:   0   12

Right Nucleus:   0   12


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   8   9   12   15

10 Elements of order 4:   2   3   4   5   6   7   10   11   13   14

Commutator Subloop:   0   9   12   15

Associator Subloop:   0   9   12   15

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,7)(3,5)(4,6)(9,15)(10,13)(11,14) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   FAILS. The right inner mapping R1,3 = (1,7)(2,8)(3,5)(4,6) is not an automorphism.   R1,3(1*1) neq R1,3(1)*R1,3(1)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001