0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 10 | 11 | 9 | 0 | 15 | 14 | 13 | 12 | 2 | 3 | 4 | 7 | 8 | 5 | 6 |
2 | 11 | 10 | 0 | 9 | 14 | 15 | 12 | 13 | 1 | 4 | 3 | 8 | 7 | 6 | 5 |
3 | 9 | 0 | 11 | 10 | 13 | 12 | 14 | 15 | 4 | 2 | 1 | 5 | 6 | 8 | 7 |
4 | 0 | 9 | 10 | 11 | 12 | 13 | 15 | 14 | 3 | 1 | 2 | 6 | 5 | 7 | 8 |
5 | 15 | 14 | 13 | 12 | 0 | 9 | 10 | 11 | 6 | 7 | 8 | 4 | 3 | 1 | 2 |
6 | 14 | 15 | 12 | 13 | 9 | 0 | 11 | 10 | 5 | 8 | 7 | 3 | 4 | 2 | 1 |
7 | 13 | 12 | 14 | 15 | 10 | 11 | 9 | 0 | 8 | 6 | 5 | 2 | 1 | 4 | 3 |
8 | 12 | 13 | 15 | 14 | 11 | 10 | 0 | 9 | 7 | 5 | 6 | 1 | 2 | 3 | 4 |
9 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 | 0 | 11 | 10 | 13 | 12 | 15 | 14 |
10 | 3 | 4 | 2 | 1 | 7 | 8 | 6 | 5 | 11 | 9 | 0 | 14 | 15 | 13 | 12 |
11 | 4 | 3 | 1 | 2 | 8 | 7 | 5 | 6 | 10 | 0 | 9 | 15 | 14 | 12 | 13 |
12 | 5 | 6 | 7 | 8 | 4 | 3 | 1 | 2 | 13 | 15 | 14 | 9 | 0 | 11 | 10 |
13 | 6 | 5 | 8 | 7 | 3 | 4 | 2 | 1 | 12 | 14 | 15 | 0 | 9 | 10 | 11 |
14 | 8 | 7 | 5 | 6 | 2 | 1 | 4 | 3 | 15 | 12 | 13 | 11 | 10 | 0 | 9 |
15 | 7 | 8 | 6 | 5 | 1 | 2 | 3 | 4 | 14 | 13 | 12 | 10 | 11 | 9 | 0 |
Centre: 0 9
Centrum: 0 9
Nucleus: 0 9
Left Nucleus: 0 9
Middle Nucleus: 0 9
Right Nucleus: 0 9
1 Element of order 1: 0
5 Elements of order 2: 5 6 9 14 15
6 Elements of order 4: 7 8 10 11 12 13
4 Elements of order 8: 1 2 3 4
Commutator Subloop: 0 9 10 11
Associator Subloop: 0 9 10 11
2 Conjugacy Classes of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(6-1) neq (1*6)-1
Al Property: FAILS. The left inner mapping L1,1 = (5,7,6,8)(12,14,13,15) is not an automorphism. L1,1(1*5) neq L1,1(1)*L1,1(5)
Ar Property: FAILS. The right inner mapping R1,5 = (1,3)(2,4)(5,6)(10,11)(12,15)(13,14) is not an automorphism. R1,5(5*12) neq R1,5(5)*R1,5(12)
Right (Left, Full) Mult Group Orders: 64 (4096, 16384)