Right Bol Loop 16.5.2.286 of order 16


0123456789101112131415
1091110151312142346758
2901011141213151437685
3101109131415124218567
4111090121514133125876
5121314159111008673421
6141513121090117852143
7151412131109106581234
8131215140101195764312
9214387650111013121514
1034217586119014151312
1143126857100915141213
1258763124131415901011
1385674213121514091110
1467581432151312111090
1576852341141213101109

Centre:   0   9

Centrum:   0   9

Nucleus:   0   9

Left Nucleus:   0   9

Middle Nucleus:   0   9

Right Nucleus:   0   9


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   2   3   4   9

10 Elements of order 4:   5   6   7   8   10   11   12   13   14   15

Commutator Subloop:   0   9   10   11

Associator Subloop:   0   9   10   11

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,1 = (3,4)(5,8)(6,7)(10,11)(12,13)(14,15) is not an automorphism.   L1,1(3*5) neq L1,1(3)*L1,1(5)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001