Right Bol Loop 16.5.2.285 of order 16


0123456789101112131415
1032547698111015141312
2406173510111413912158
3517062411101314815129
4260715312159814101113
5371604215128913111014
6745230113141215108911
7654321014131512119810
8109111213151476234105
9118101514121367325014
1081213911141554761320
1191514810131245670231
1213108141591132107546
1312141510811910452763
1415131211910801543672
1514119131281023016457

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   1   6   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   2   5   6   7

10 Elements of order 4:   3   4   8   9   10   11   12   13   14   15

Commutator Subloop:   0   3   4   7

Associator Subloop:   0   3   4   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,4)(8,11,14,12)(9,10,13,15) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001