Right Bol Loop 16.5.2.245 of order 16


0123456789101112131415
1036274591511101312814
2457160310118141591312
3670541213101489151211
4215037611129151481013
5764302115141213101198
6301725412131598141110
7542613014813121110159
8910131115121451642370
9813121014111575324601
1011151491281364570132
1110915813141236751024
1213891410151123015746
1312148151191042107563
1415111012913810463257
1514121113810907236415

Centre:   0   5

Centrum:   0   5

Nucleus:   0   5

Left Nucleus:   0   5   11   13

Middle Nucleus:   0   5

Right Nucleus:   0   5


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   1   3   4   5   7

10 Elements of order 4:   2   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   5

Associator Subloop:   0   5

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001