Right Bol Loop 16.5.2.100 of order 16


0123456789101112131415
1159101213140116348527
2141511131209107453816
3131215140111098126745
4121014159131105271638
5101109151213144762183
6901210111514131835472
7014131110915122584361
8111390141012153617254
9274381650111310121514
1038721456110914151213
1143612587109150141312
1285276341131401591011
1354167832121514901110
1461854723151210131109
1576583214141312111090

Centre:   0   15

Centrum:   0   15

Nucleus:   0   15

Left Nucleus:   0   15

Middle Nucleus:   0   15

Right Nucleus:   0   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

5 Elements of order 2:   9   10   13   14   15

10 Elements of order 4:   1   2   3   4   5   6   7   8   11   12

Commutator Subloop:   0   15

Associator Subloop:   0   15

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,1 = (3,5)(10,13) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001